Physical Activity Levels of High School Students — United States, 2010

Healthy People 2020 (HP 2020), released in December 2010, outlines numerous public health objectives, including objectives for youth physical activity participation (1). HP 2020 includes three objectives for meeting current federal physical activity guidelines for 1) aerobic physical activity (participation in ≥ 60 minutes of aerobic activity per day, 7 days per week) (PA 3.1); 2) muscle-strengthening activity (muscle-strengthening activities on ≥ 3 days per week) (PA 3.2); and 3) aerobic physical activity and muscle-strengthening activity combined (PA 3.3) (1,2). The HP 2020 target for PA 3.1 is 20.2%; targets for PA 3.2 and PA 3.3 are not set because baseline data are not available. To meet the HP 2020 targets for physical activity, promotion of physical activity among female high school students (3), high school students in upper grades (3), and youths with obesity (4) might be warranted, given that these subpopulations are at risk for low levels of physical activity. To determine the proportion of U.S. youths who meet these HP 2020 objectives, CDC analyzed data from the 2010 National Youth Physical Activity and Nutrition Study (NYPANS), a school-based study conducted by CDC that included height and weight measurements and a survey that measured physical activity and dietary behaviors among a nationally representative sample of students in grades $9-12$. This report summarizes the results of that analysis, which indicated that among students nationwide in grades 9-12, 15.3% met the aerobic objective, 51.0% met the muscle-strengthening objective, and 12.2% met the objective for both aerobic and muscle-strengthening activities. To improve youth physical activity participation, efforts are needed among CDC, state and local public health agencies, schools, and other public health partners that promote physical activity.
NYPANS measured the prevalence of behaviors and behavioral determinants related to physical activity and nutrition. The survey used a three-stage cluster sample design to obtain cross-sectional data representative of public- and private-school students in grades 9-12 in all 50 states and the District of Columbia. Students completed an anonymous,
self-administered questionnaire in their classrooms during a regular class period in the spring of 2010. Data from 11,429 students were available for analysis. The school response rate was 82%, the student response rate was 88%, and the overall response rate* was 73%. Trained data collectors also measured students' height and weight using a standard protocol. A total of 1,728 respondents with missing data on sex, grade, race/ ethnicity, height, weight, or physical activity were excluded, resulting in a final sample of 9,701 students.
To assess aerobic physical activity, students were asked, "During the past 7 days, on how many days were you physically active for a total of at least 60 minutes per day? (Add up all the time you spent in any kind of physical activity that increased your heart rate and made you breathe hard some of the time.)" Response choices ranged from 1 to 7 days. To assess muscle-strengthening activity, students were asked, "On how many of the past 7 days did you do exercises to strengthen or tone your muscles, such as push-ups, sit-ups, or weight lifting?" Response choices ranged from 0 to 7 days. Body mass index (BMI) was calculated from measured weight and height (weight $[\mathrm{kg}] /$ height $\left[\mathrm{m}^{2}\right]$) and classified as under/normal weight,

[^0]
INSIDE

```
7 7 8 \text { Beverage Consumption Among High School}
        Students - United States, 2010
781 Place of Influenza Vaccination Among Adults
        - United States, 2010-11 Influenza Season
7 8 6 \text { Notes from the Field: Hantavirus Pulmonary}
        Syndrome - Maine, April }201
787 Announcement
788 QuickStats
```

overweight, or obese based on sex-specific and age-specific reference data from the 2000 CDC growth charts. ${ }^{\dagger}$
Students met the HP 2020 physical activity objectives (1) if they met current federal physical activity guidelines for 1) aerobic physical activity (participation in ≥ 60 minutes of aerobic activity per day, 7 days per week) (PA 3.1), 2) musclestrengthening activity (muscle-strengthening activities on ≥ 3 days per week) (PA 3.2), and 3) aerobic physical activity and muscle-strengthening activity (participation in ≥ 60 minutes of aerobic activity per day, 7 days per week and muscle-strengthening activities on ≥ 3 days/week) (PA 3.3). Data were weighted to provide national prevalence estimates and were examined by demographic characteristics (sex, grade, and race/ethnicity) and BMI category. Statistical software was used to account for the complex sampling design and calculate prevalence estimates and 95% confidence intervals; t tests were conducted for pairwise subgroup comparisons, and linear and quadratic trends in grade and BMI category were tested. Because the numbers of students from other racial/ethnic groups were too small for meaningful analysis, race/ethnicity is reported only for nonHispanic white, non-Hispanic black, and Hispanic students (who might be of any race). All differences presented in this report are statistically significant ($\mathrm{p}<0.05$).

[^1]Nationwide, 15.3% of high school students met the HP 2020 objective for aerobic activity. A higher percentage of male (21.9\%) compared with female (8.4%) students; 9th-grade (18.5%) compared with 10 th-grade (15.3%), 11th-grade (13.3%), and 12th-grade (13.1%) students; white (16.9%) compared with Hispanic (11.8%) students; and under/normal weight (16.3%) and overweight (16.5%) students compared with those with obesity (10.7%) met the aerobic objective (Table).
Nationwide, 51.0% of high school students met the HP 2020 objective for muscle-strengthening activity. A higher percentage of male (65.0%) compared with female (36.6%) students; 9th-grade (55.6%) and 10th-grade (52.2%) compared with 12 th-grade (46.4%) students; and under/normal weight (52.6%) and overweight (51.7%) students compared with those with obesity (45.2%) met the muscle-strengthening objective.
Nationwide, 12.2% of high school students met the HP 2020 objective for both aerobic and muscle-strengthening activities. A higher percentage of male (18.5%) compared with female (5.8%) students; 9th-grade (15.0%) compared with 10th-grade (12.3%), 11th-grade (10.7%), and 12th-grade (10.3%) students ; white (14.1%) compared with black (9.7%) and Hispanic (9.9%) students; and under/normal weight (13.3%) and overweight (13.6%) students compared with those with obesity (7.3%) met the objective for both aerobic and muscle-strengthening activities.

The MMWR series of publications is published by the Office of Surveillance, Epidemiology, and Laboratory Services, Centers for Disease Control and Prevention (CDC), U.S. Department of Health and Human Services, Atlanta, GA 30333.

Suggested citation: Centers for Disease Control and Prevention. [Article title]. MMWR 2011;60:[inclusive page numbers].

> Centers for Disease Control and Prevention
> Thomas R. Frieden, MD, MPH, Director
> Harold W. Jaffe, MD, MA, Associate Director for Science James W. Stephens, PhD, Director, Office of Science Quality

Stephen B. Thacker, MD, MSc, Deputy Director for Surveillance, Epidemiology, and Laboratory Services Stephanie Zaza, MD, MPH, Director, Epidemiology and Analysis Program Office

MMWR Editorial and Production Staff
Ronald L. Moolenaar, MD, MPH, Editor, MMWR Series
John S. Moran, MD, MPH, Deputy Editor, MMWR Series Martha F. Boyd, Lead Visual Information Specialist
Robert A. Gunn, MD, MPH, Associate Editor, MMWR Series
Malbea A. LaPete, Julia C. Martinroe,
Teresa F. Rutledge, Managing Editor, MMWR Series Stephen R. Spriggs, Terraye M. Starr Visual Information Specialists
Douglas W. Weatherwax, Lead Technical Writer-Editor
Quang M. Doan, MBA, Phyllis H. King
Donald G. Meadows, MA, Jude C. Rutledge, Writer-Editors Information Technology Specialists
MMWR Editorial Board
William L. Roper, MD, MPH, Chapel Hill, NC, Chairman

Virginia A. Caine, MD, Indianapolis, IN
Jonathan E. Fielding, MD, MPH, MBA, Los Angeles, CA
David W. Fleming, MD, Seattle, WA
William E. Halperin, MD, DrPH, MPH, Newark, NJ King K. Holmes, MD, PhD, Seattle, WA Deborah Holtzman, PhD, Atlanta, GA John K. Iglehart, Bethesda, MD Dennis G. Maki, MD, Madison, WI

Patricia Quinlisk, MD, MPH, Des Moines, IA
Patrick L. Remington, MD, MPH, Madison, WI Barbara K. Rimer, DrPH, Chapel Hill, NC John V. Rullan, MD, MPH, San Juan, PR William Schaffner, MD, Nashville, TN Anne Schuchat, MD, Atlanta, GA Dixie E. Snider, MD, MPH, Atlanta, GA John W. Ward, MD, Atlanta, GA

TABLE. Percentage of high school students meeting Healthy People 2020 (HP 2020) objectives related to physical activity, by selected characteristics — National Youth Physical Activity and Nutrition Study, United States, 2010*

Characteristic	Met HP 2020 objective for aerobic activity ${ }^{\dagger}$		Met HP 2020 objective for muscle-strengthening activity ${ }^{\S}$		Met HP 2020 objective for combination of aerobic and muscle-strengthening activity ${ }^{\text {§ }}$	
	\%	(95\% CI)	\%	(95\% CI)	\%	(95\% CI)
Total	15.3	(13.6-17.1)	51.0	(48.6-53.5)	12.2	(10.9-13.7)
Sex						
Male	21.9	(19.2-24.9)	65.0	(60.8-68.9)	18.5	(16.2-21.0)
Female	8.4	(7.2-9.6)	36.6	(34.2-39.2)	5.8	(4.8-6.8)
Grade**						
9	18.5	(15.6-21.8)	55.6	(50.0-61.1)	15.0	(12.6-17.8)
10	15.3	(13.6-17.1)	52.2	(48.4-55.9)	12.3	(10.8-14.0)
11	13.3	(11.3-15.8)	48.6	(43.8-53.5)	10.7	(8.8-12.9)
12	13.1	(11.1-15.4)	46.4	(43.5-49.3)	10.3	(8.3-12.6)
Race/Ethnicity						
White, non-Hispanic	16.9	(15.3-18.7)	51.1	(48.0-54.2)	14.1	(12.6-15.6)
Black, non-Hispanic	15.0	(12.8-17.5)	48.7	(45.8-51.6)	9.7	(8.1-11.5)
Hispanic	11.8	(8.7-15.7)	53.7	(49.3-58.0)	9.9	(7.4-13.3)
Body mass index**††						
Underweight/Normal	16.3	(14.5-18.2)	52.6	(49.9-55.3)	13.3	(11.8-15.0)
Overweight	16.5	(13.4-20.1)	51.7	(47.2-56.1)	13.6	(10.7-17.0)
Obese	10.7	(8.2-13.8)	45.2	(41.6-48.8)	7.3	(5.2-10.1)

Abbreviation: $\mathrm{Cl}=$ confidence interval.

* Total percentages might not add to 100% because of rounding.
† Per HP 2020 objective PA 3.1 (additional information available at http://healthypeople.gov/2020/topicsobjectives2020/objectiveslist.aspx?topicld=33). To assess aerobic activity, students were asked, "During the past 7 days, on how many days were you physically active for a total of at least 60 minutes per day? (Add up all the time you spent in any kind of physical activity that increased your heart rate and made you breathe hard some of the time)." Response choices ranged from 1 to 7 days. Students were considered to have met the objective if they participated in ≥ 60 minutes of aerobic activity per day on all 7 days before the survey.
§ Per HP 2020 objective PA 3.2. To assess muscle-strengthening activity, students were asked, "On how many of the past 7 days did you do exercises to strengthen or tone your muscles, such as push-ups, sit-ups, or weight lifting?" Response choices ranged from 0 to 7 days. Students were considered to have met the objective if they did muscle-strengthening activities on ≥ 3 days during the 7 days before the survey.
II Per HP 2020 objective PA 3.3. Students were considered to have met the objective if they participated in ≥ 60 minutes of aerobic activity per day on all 7 days before the survey (PA 3.1) and did muscle-strengthening activities on ≥ 3 days during the 7 days before the survey (PA 3.2).
** Linear trend by grade and body mass index category ($p<0.05$).
${ }^{\dagger \dagger}$ Body mass index estimates were calculated from measured weight and height (weight [kg] / height [m²]) and classified based on sex-specific and age-specific reference data from the 2000 CDC growth charts (<85 percentile $=$ under/normal weight, ≥ 85 and <95 percentile $=$ overweight, and ≥ 95 percentile $=$ obese).

Reported by

Janet E. Fulton, PhD, Dianna D. Carroll, PhD, Deborah A. Galuska, PhD, Div of Nutrition, Physical Activity, and Obesity, Sarah M. Lee, PhD, Danice K. Eaton, PhD, Nancy D. Brener, PhD, Div of Adolescent and School Health, National Center for Chronic Disease Prevention and Health Promotion; MinKyoung Song, PhD, EIS Officer, CDC. Corresponding contributor: MinKyoung Song, msong@cdc.gov, 770-488-5718.

Editorial Note

The findings of this study indicate that approximately one out of 10 U.S. high school students met the HP 2020 objective for both aerobic and muscle-strengthening activities (PA 3.3). The low prevalence of meeting PA 3.3 is a function of the low percentage of students who met the objective for aerobic activity (PA 3.1), which might be attributable to the greater number of days and time needed to meet the aerobic activity recommendation compared with the muscle-strengthening activity recommendation. The prevalence of meeting the objective for
both aerobic and muscle-strengthening activities (PA 3.3) was found to be lower among female students, students in upper grades, and students with obesity.
The most recent nationally representative self-report data for muscle-strengthening activity was collected in the 2003 national Youth Risk Behavior Survey (YRBS). The findings in this report are consistent with those from the 2003 YRBS (5), with one exception: data from the 2003 YRBS indicated that white and Hispanic students have higher levels of musclestrengthening activity than black students, whereas this report notes no statistically significant difference by race/ethnicity. With respect to estimates of aerobic activity, the findings in this report are consistent with those from the 2009 YRBS. Although the aerobic activity estimate (15.3%) from this report is lower than the 2009 YRBS (18.4%), the findings in this report showed patterns by sex, grade, and race/ethnicity that are consistent with the results of that survey (3).
The findings in this report are subject to at least three limitations. First, the reliability and validity of responses to the

What is already known on this topic?

Prevalence of physical activity levels among U.S. youths has been examined over time, but data on the proportion of U.S. youths who meet Healthy People 2020 objectives have not been reported.

What is added by this report?

Based on data from the 2010 National Youth Physical Activity and Nutrition Study, among high school students nationwide in grades 9-12, 15.3\% did ≥ 60 minutes of aerobic activity per day, 7 days per week, 51.0% did muscle-strengthening activities on ≥ 3 days per week, and 12.2% did ≥ 60 minutes of aerobic activity per day, 7 days per week and did musclestrengthening activities on ≥ 3 days per week. Particularly, female students, students in upper grades, and students with obesity had lower rates of meeting the objective for aerobic and muscle-strengthening activities.
What are the implications for public health practice?
Along with federal efforts, multisectoral partnerships involving schools, communities, and the private sector might be necessary to increase both aerobic and muscle-strengthening activities among U.S. high school students, with a particular focus on female students, students in upper grades, and students with obesity.
aerobic activity and muscle-strengthening survey questions have not been determined, and underreporting or overreporting might have occurred (e.g., because of recall or socialdesirability bias). However, studies among youths comparing self-reported physical activity levels to accelerometer readings have demonstrated acceptable correlations (6,7). Second, NYPANS inadvertently did not include a "zero days" response to the aerobic question; therefore, more students might have reported some amount of aerobic activity than might have done so if a "zero days" response option had been offered. However, having no "zero days" response option likely did not affect the number of students who reported aerobic activity 7 days per week. Finally, these findings only apply to students who attended public and private high schools. Nationally, in 2008, approximately 4% of youths aged 16-17 years had not completed high school and were not enrolled in a high school program (8).
This study serves as the first assessment of achievement of both aerobic and muscle-strengthening physical activity recommendations among a nationally representative sample of high school students, and its results justify the need to improve and increase efforts to promote physical activity among youths. Barriers to increasing youth physical activity participation include students' reluctance to participate because of low confidence levels in their physical abilities, lack of awareness of physical activity benefits, lack of family/peer support, lack of choices in physical education (PE) curriculum activities,
and inadequate school/community facilities or resources for physical activity (9).
CDC's Guide to Community Preventive Services ${ }^{\circledR}$ recommends evidence-based strategies to increase physical activity, such as enhancing school-based PE programs by increasing the length of classes or activity levels in PE classes. The guide also recommends creation of or enhanced access to places for physical activity combined with informational outreach activities about their location and availability. Additionally, the Youth Physical Activity Guidelines Toolkit ${ }^{9}$ provides specific strategies that schools, families, and communities can use to support youth physical activity.
These strategies are being included in programs such as the First Lady's Let's Move! campaign,** CDC's Communities Putting Prevention to Work program, ${ }^{\dagger \dagger}$ and the Safe Routes to School program. ${ }^{\$ \$}$ Additionally, the National Physical Activity Plan ${ }^{9}$ identifies the need to use a multisector approach involving schools, communities, families, and the private sector to facilitate integrated approaches to increasing population activity levels. Continued efforts to implement these evidence-based strategies and programs will help to meet the HP 2020 objective target for aerobic activity as well as the targets for muscle-strengthening activity and both aerobic and muscle-strengthening activities (once these targets have been set based on findings from the 2011 national YRBS). Public health efforts to improve participation in aerobic and musclestrengthening activities among U.S. high school students might be most relevant for female students, students in upper grades, and students with obesity.

[^2]
References

1. US Department of Health and Human Services. Objectives PA-3.1, 3.2, and 3.3. In: Healthy people 2020. Washington, DC: US Department of Health and Human Services; 2010. Available at http://healthypeople. gov/2020/topicsobjectives2020/objectiveslist.aspx?topicid=33. Accessed June 7, 2011.
2. US Department of Health and Human Services. 2008 physical activity guidelines for Americans. Hyattsville, MD: US Department of Health and Human Services; 2008. Available at http://www.health.gov/paguidelines. Accessed June 7, 2011.
3. CDC. Youth risk behavior surveillance-United States, 2009. MMWR 2010;59(No. SS-05).
4. Belcher BR, Berrigan D, Dodd KW, Emken BA, Chou CP, Spruijt-Metz D. Physical activity in US youth: effect of race/ethnicity, age, gender, and weight status. Med Sci Sports Exerc 2010;42:2211-21.
5. CDC. Youth risk behavior surveillance—United States, 2003. MMWR 2004;53(No. SS-02).
6. Weston AT, Petosa R, Pate RR. Validation of an instrument for measurement of physical activity in youth. Med Sci Sports Exerc 1997;29: 138-43.
7. Ekelund U, Neovius M, Linné Y, Rössner S. The criterion validity of a last 7-day physical activity qusetionnaire (SAPAQ) for use in adolescents with a wide variation in body fat: the Stockholm weight development study. Int J Obes (Lond) 2006;30:1019-21.
8. Chapman C, Laird J, KewalRamani A. Trends in high school dropout and completion rates in the United States: 1972-2008. Washington, DC: US Department of Education; 2010. Available at http://nces.ed.gov/ pubs2011/2011012.pdf. Accessed June 7, 2011.
9. Rees R, Kavanagh J, Harden A, et al. Young people and physical activity: a systematic review matching their views to effective interventions. Health Educ Res 2006;21:806-25.

Beverage Consumption Among High School Students — United States, 2010

Milk and 100% fruit juice are a source of water and provide key nutrients such as calcium and vitamin C (1). Other beverages, referred to as sugar drinks or sugar-sweetened beverages (SSBs), also are a source of water but have poor nutritional value. SSBs are the largest source of added sugars in the diet of U.S. youths, and the increased caloric intake resulting from these beverages is one factor contributing to the prevalence of obesity among adolescents in the United States $(2,3)$. To determine the extent to which U.S. adolescents consume different types of beverages and variations in consumption by sex and race/ethnicity, CDC analyzed data from the 2010 National Youth Physical Activity and Nutrition Study (NYPANS). NYPANS included a school-based survey conducted by CDC that measured physical activity and dietary behaviors among a nationally representative sample of students in grades 9-12. This analysis indicated that, although water, milk, and 100% fruit juice were the beverages consumed most commonly during the 7 days before the survey, 24.3% of high school students drank a serving (e.g., can, bottle, or glass) of regular soda or pop, 16.1% drank a serving of a sports drink, and 16.9% drank a serving of another SSB one or more times per day during the same period. For all SSBs, male students were more likely than female students, and black students were more likely than white students and Hispanic students to report drinking these beverages one or more times per day. Families, schools, and youth-oriented institutions should limit SSBs among all adolescents while ensuring their access to more healthful beverages. Targeted efforts are especially needed to reduce consumption of SSBs among male and black adolescents.

NYPANS measured the prevalence of behaviors and behavioral determinants related to physical activity and nutrition. The survey used a three-stage cluster sample design to obtain cross-sectional data representative of public- and private-school students in grades $9-12$ in all 50 states and the District of Columbia. Students completed an anonymous, self-administered questionnaire in their classrooms during a regular class period during the spring of 2010. Data from 11,429 students were available for analysis. The school response rate was 82%, the student response rate was 88%, and the overall response rate* was 73%.
Respondents were asked how many times during the 7 days before the survey they drank the following beverages: 100% fruit juices; regular soda or pop; diet soda or pop; regular sports drinks; energy drinks; other SSBs †; coffee, coffee drinks, or

[^3]any kind of tea; and plain water (i.e., water). ${ }^{\S}$ Respondents also were asked how many glasses of milk they drank per day during the 7 days before the survey. ${ }^{9}$ Responses were divided into less than one time or glass per day versus one or more times or glasses per day (i.e., daily consumption). To calculate the percentage of students who drank any combination of SSBs during the 7 days before the survey, responses to questions on regular soda or pop, regular sports drinks, and other SSBs that indicated consumption of less than once a day were divided by seven to determine daily intake and then responses were summed.
Race/ethnicity data are presented only for non-Hispanic black, non-Hispanic white, and Hispanic students (who might be of any race); the numbers of students from other racial/ ethnic groups were too small for meaningful analysis. Data were weighted to provide national estimates. Statistical software that takes into account the complex sampling design was used to calculate prevalence estimates and 95% confidence intervals (CIs) and to conduct t tests for subgroup differences ($\mathrm{p}<0.01$).
During the 7 days before the survey, 72.4% of high school students nationwide drank a serving of water daily, 42.0% drank one or more glasses of milk daily, and 30.2% drank 100% fruit juices daily (Table). Although water consumption did not vary by sex, male students were more likely than female students to drink milk and 100% fruit juices daily. White students were more likely than black students and Hispanic students to drink both water and milk daily, and Hispanic

[^4]TABLE. Percentage of high school students ($\mathrm{N}=11,429$) who drank a serving (e.g., can, bottle, or glass) of selected beverages one or more times per day during the 7 days before the survey, by beverage, sex, and, race/ethnicity - National Youth Physical Activity and Nutrition Study, 2010

Characteristic	Type of beverage consumed																	
	Water*		Milk ${ }^{\dagger}$		100\% fruit juice ${ }^{\text {§ }}$		Soda or pop"		Sports drink**		Other sugarsweetened beverage ${ }^{\dagger \dagger}$		Coffee, coffee drink, or tea ${ }^{\S \S}$		Diet soda or pop"11		Energy drink ${ }^{* * *}$	
	\%	(95\% CI)	\%	(95\% CI)		(95\% CI)	\%	(95\% CI)										
Total	72.4	(70.0-74.7)	42.0	(38.8-45.2)	30.2	(28.8-31.7)	24.3	(22.0-26.9)	16.1	(14.7-17.7)	16.9	(15.4-18.6)	14.8	(13.1-16.7)	7.1	(6.3-8.0)	5.0	(4.3-5.9)
Sex																		
Female	71.8	(68.6-74.9)	35.0	(32.4-37.6)	26.5	(24.9-28.1)	20.3	(17.6-23.1)	11.1	(9.3-13.1)	16.3	(14.3-18.5)	15.7	(13.5-18.1)	7.4	(6.1-8.9)	3.4	(2.5-4.5)
Male	72.9	(70.5-75.1)	48.9	(45.0-52.8)	33.9	(32.0-35.8)	28.4	(25.9-31.1)	21.1	(19.4-22.9)	17.6	(16.0-19.3)	14.1	(12.4-15.9)	6.8	(5.9-7.8)	6.6	(5.6-7.7)
Race/Ethnicity																		
White, nonHispanic	75.7	(73.0-78.2)	46.6	(43.1-50.0)	27.4	(25.2-29.8)	24.0	(21.1-27.1)	13.5	(12.0-15.1)	15.5	(13.3-18.0)		(13.5-19.1)	7.9	(6.6-9.4)	3.3	(2.7-3.9)
Black, nonHispanic	63.5	(60.6-66.3)	29.3	(26.7-31.9)	35.6	(33.5-37.8)	32.0	(28.5-35.8)	25.6	(21.3-30.5)	24.5	(22.0-27.1)	12.4	(10.7-14.3)	7.5	(6.5-8.8)	8.7	(7.1-10.8)
Hispanic	69.2	(65.5-72.7)	39.1	(35.2-43.1)	33.6	(30.7-36.6)	22.8	(19.2-26.9)	17.5	(15.5-19.7)	16.1	(14.6-17.7)	12.5	(11.1-14.0)	6.0	(4.9-7.4)	6.7	(5.3-8.5)

Abbreviation: $\mathrm{Cl}=$ confidence interval.

* Including tap, bottled, and unflavored sparkling water.
† One or more glasses of milk.
${ }^{\text {§ }}$ Such as orange juice, apple juice, or grape juice; not including punch, Kool-Aid, sports drinks, or other fruit-flavored drinks.
${ }^{1}$ Such as Coke, Pepsi, or Sprite; not including diet soda or diet pop.
** Such as Gatorade or PowerAde; not including low-calorie sports drinks such as Propel or G2.
$\dagger+$ Such as lemonade, sweetened tea or coffee drinks, flavored milk, Snapple, or Sunny Delight; not including soda or pop, sports drinks, energy drinks, or 100% fruit juice.
§§ Coffee, coffee drinks, or any kind of tea.
919 Such as Diet Coke, Diet Pepsi, or Sprite Zero.
*** Such as Red Bull or Jolt; not including diet energy drinks or sports drinks.
students were more likely than black students to drink milk daily. White students were less likely than black students and Hispanic students to drink 100% fruit juices daily.
During the 7 days before the survey, 24.3% of high school students nationwide drank a serving of regular soda or pop, 16.1% drank a serving of a sports drink, and 16.9% drank a serving of another SSB daily (Table). Male students were more likely than female students to drink soda or pop and sports drinks daily, but no sex differences were detected in the daily consumption of other SSBs. For all three types of drinks, black students were more likely than white students and Hispanic students to report daily consumption. In addition, Hispanic students were more likely than white students to drink sports drinks daily. In addition, 15.6% of high school students nationwide drank soda or pop two or more times per day, 9.2% drank sports drinks two or more times per day, and 9.8% drank other SSBs two or more times per day. During the 7 days before the survey, 62.8% of high school students drank any combination of these beverages daily, and 32.9% drank any combination of these beverages two or more times per day.

During the 7 days before the survey, 14.8% of high school students nationwide drank a serving of coffee, coffee drinks, or any kind of tea daily. Daily consumption of diet soda or pop (7.1%) and energy drinks (5.0%) was less common (Table). Daily consumption of diet soda or pop and coffee, coffee drinks, or tea did not vary by sex, but male students were more likely than female students to drink energy drinks daily. White students were less likely than black students and Hispanic students to drink energy drinks daily.

Reported by

Nancy D. Brener, PhD, Caitlin Merlo, MPH, Danice Eaton, PhD, Laura Kann, PhD, Div of Adolescent and School Health, Sohyun Park, PhD, Heidi M. Blanck, PhD, Div of Nutrition, Physical Activity, and Obesity, National Center for Chronic Disease Prevention and Health Promotion, CDC. Corresponding contributor: Nancy D. Brener, nbrener@cd.gov, 770-488-6184.

Editorial Note

The findings in this report indicate that water, milk, and 100% fruit juices were the beverages most commonly consumed daily by high school students. These are healthful beverages, and milk and 100% fruit juice are sources of key nutrients. According to this analysis, however, daily consumption of regular soda or pop, sports drinks, and other SSBs also is common in this population. Consumption of these beverages might be related to negative health outcomes. A recent metaanalysis found soft drink intake to be associated with increased energy intake and body weight, and with lower intakes of milk, calcium, and other nutrients (4). Among adolescents specifically, SSB consumption can contribute to weight gain, type 2 diabetes, and metabolic syndrome $(2,3)$.
Compared with results from 24 -hour dietary recall interviews conducted among persons aged 12-19 years as part of the National Health and Nutrition Examination Survey, findings from NYPANS are higher for daily consumption of 100% fruit juice, but lower for SSBs (G). However, a study using a questionnaire similar to that used in NYPANS among a population-based sample of public-school students in Texas
found results more similar to those of NYPANS for daily consumption of milk, 100% fruit juice, and soda (7). Results by sex and race/ethnicity from the Texas study also are similar to those in this report; both found that consumption of soda or pop, sports drinks, and other SSBs is highest among male and black students (7).
The findings in this report are subject to at least two limitations. First, these data apply only to youths who attend school and, therefore, are not representative of all persons in this age group. Nationwide, in 2008, of persons aged 16-17 years, approximately 4% were not enrolled in a high school program and had not completed high school (8). Second, the data are self-reported, and although whether students were underreporting or overreporting their consumption of beverages cannot be determined, results did differ from those using 24 -hour recall methods (). CDC currently is conducting studies to determine the extent to which these survey data correspond to data collected from a subsample of students using 24 -hour recall methods.
When selecting beverages, adolescents should be aware that water and low-fat or fat-free milk are the most healthful. In limited amounts, 100% fruit juice also has health benefits. Adolescents also should be aware that consuming regular soda or pop, sports drinks, and other SSBs can lead to weight gain and diabetes. According to the American Academy of Pediatrics, routine ingestion of sports drinks by children and adolescents should be avoided or restricted (9). In addition, a recommendation of the 2010 Dietary Guidelines for Americans is to reduce the intake of calories from solid fats and added sugars.** CDC works with state education and health agencies to implement multiple strategies for decreasing the intake of added sugars, with a specific emphasis on reduction of SSBs among all populations, including adolescents. One such strategy is to limit access to these drinks in schools through policy and environmental change. Such efforts have met with considerable success. A recent analysis of data from 34 states found significant increases in all of these states between 2006 and 2008 in the percentage of secondary schools in which students could not purchase soda pop or fruit drinks that were not 100% juice (10). CDC also is encouraging schools to improve access to free drinking water. Still, additional strategies are needed to reduce SSB consumption, especially among male and black students. Although changing school policy is an important first step, most calories from these drinks are consumed in the home (6). It is critical, therefore, to involve families, the media, and other institutions that interact with adolescents to increase their awareness of possible detrimental health effects and discourage their consumption of SSBs.

[^5]
What is already known on this topic?

Sugar-sweetened beverages (SSBs) are the largest source of added sugars in the diet of U.S. youths; the increased caloric intake resulting from these beverages is one factor potentially contributing to the prevalence of obesity among adolescents nationwide.
What is added by this report?
Based on data from the 2010 National Youth Physical Activity and Nutrition Study, U.S. adolescents most commonly consumed water, milk, or 100% fruit juice during the 7 days before the survey, but daily consumption of regular soda or pop, sports drinks, and other SSBs is common in this population, especially among male and black students.
What are the implications for public health practice?
When selecting beverages, adolescents should be aware that water, low-fat or fat-free milk, and limited amounts of 100% fruit juice are the most healthful options, and that regular consumption of regular soda or pop, sports drinks, and other SSBs can lead to excess weight and diabetes. Families, schools, and youth-oriented institutions should limit access to SSBs while ensuring access to more healthful, low-calorie beverages.

References

1. US Department of Agriculture. USDA national nutrient database for standard reference, release 23. Beltsville, MD: US Department of Agriculture, Agricultural Research Service, Nutrient Data Laboratory; 2010. Available at http://www.ars.usda.gov/Services/docs.htm?docid= 8964. Accessed June 9, 2011.
2. Reedy J, Krebs-Smith SM. Dietary sources of energy, solid fats, and added sugars among children and adolescents in the United States. J Am Diet Assoc 2010;110:1477-84.
3. Ludwig DS, Peterson KE, Gortmaker SL. Relation between consumption of sugar-sweetened drinks and childhood obesity: a prospective, observational analysis. Lancet 2001;357:505-8.
4. Vartanian LR, Schwartz MB, Brownwell KD. Effects of soft drink consumption on nutrition and health: a systematic review and metaanalysis. Am J Public Health 2007;97:667-5.
5. Malik VS, Popkin BM, Bray GA, Despres JP, Willett WC, Hu FB. Sugar-sweetened beverages and risk of metabolic syndrome and type 2 diabetes: a meta-analysis. Diabetes Care 2010;33:2477-83.
6. Wang YC, Bleich SN, Gortmaker SL. Increasing caloric contribution from sugar-sweetened beverages and 100% fruit juices among US children and adolescents, 1988-2004. Pediatrics 2008;121:e1604-14.
7. Evans AE, Springer AE, Evans MH, Ranjit N, Hoelscher DM. A descriptive study of beverage consumption among an ethnically diverse sample of public school students in Texas. J Am Coll Nutr 2010;29:387-96.
8. Chapman C, Laird J, KewalRamani A. Trends in high school dropout and completion rates in the United States: 1972-2008. Washington, DC: US Department of Education, National Center for Education Statistics, 2010. Publication no. NCES 2011-012.
9. American Academy of Pediatrics Committee on Nutrition and the Council on Sports Medicine. Clinical report-sports drinks and energy drinks for children and adolescents: are they appropriate? Pediatrics 2011;127:1182-9.
10. CDC. Availability of less nutritious snack foods and beverages in secondary schools—selected states, 2002-2008. MMWR 2009;58:1102-4.

Place of Influenza Vaccination Among Adults - United States, 2010-11 Influenza Season

The 2010-11 influenza season was the first season after the 2009 influenza A (H1N1) pandemic and the first season that the Advisory Committee on Immunization Practices (ACIP) recommended influenza vaccination for all persons aged ≥ 6 months (1). During the pandemic, many new partnerships between public health agencies and medical and nonmedical vaccination providers were formed, increasing the number of vaccination providers (2). To provide a baseline for places where adults received influenza vaccination since the new ACIP recommendation and to help vaccination providers plan for the 2011-12 influenza season, CDC analyzed information from 46 states and the District of Columbia (DC) on influenza vaccination of adults aged ≥ 18 years for the 2010-11 season, collected during January-March 2011 by the Behavioral Risk Factor Surveillance System (BRFSS). This report summarizes the results of that analysis, which found that, for adults overall, a doctor's office was the most common place (39.8%) for receipt of the 2010-11 influenza vaccine, with stores (e.g., supermarkets or drug stores) (18.4%) and workplaces (17.4\%) the next most common. For those aged 18-49 years and 50-64 years, a workplace was the second most common place of vaccination (25.7% and 21.1%, respectively). Persons aged ≥ 65 years who were not vaccinated at a doctor's office were most likely (24.3%) to have been vaccinated at a store. The results indicate that both medical and nonmedical settings are common places for adults to receive influenza vaccinations, that a doctor's office is the most important medical setting, and that workplaces and stores are important nonmedical settings.

BRFSS is a state-based, random-digit-dialed landline telephone survey collecting information from randomly selected persons aged ≥ 18 years among the noninstitutionalized, civilian population in 50 states and DC. BRFSS data are weighted for the probability of selection of a telephone number, the number of adults in a household, and the number of telephones in a household; a final poststratification adjustment is made for nonresponse and noncoverage of households without telephones (3). A total of 36,581 responses collected by BRFSS during January-March 2011 from adults in 46 states and DC who received an influenza vaccination during the 2010-11 influenza season were analyzed to estimate the percentage receiving the vaccine in various medical and nonmedical settings. The median state Council of American Survey and Research Organizations (CASRO) BRFSS response rate was 54.3%.
Respondents were asked whether they had received a flu vaccination during the past 12 months and if so, in which
month and year and at what kind of place.* January interview data were available from 41 states; February interview data were available from 45 states and DC, and March interview data from 43 states and DC. ${ }^{\dagger}$ A total of 662 respondents who said they had received an influenza vaccination in the period before the 2010-11 influenza vaccine was available (i.e., during January-June 2010) were excluded from analysis. Also excluded were those for whom place of influenza vaccination data were missing (891 respondents), those who said they received their vaccinations in Canada or Mexico (21), those who said they did not know where they received their vaccination (61), and those who declined to answer the question (21).
Reported place of vaccination was analyzed by age group ($18-49$ years, $50-64$ years, and ≥ 65 years) and divided into settings that were medical (doctor's office or health maintenance organization, health department, another type of clinic or health center, and hospital or emergency department) or nonmedical (senior, recreation, or community center; workplace; store; school; and some other kind of place). In addition to age group, medical or nonmedical setting was analyzed by sex, race/ethnicity, education, history of certain chronic conditions (i.e., asthma, diabetes, or cardiovascular disease) that increase the risk for influenza complications, health insurance status, time since last routine checkup, existence of a personal doctor, and cost as a barrier to seeing a doctor in the past 12 months. Tests of association between medical/nonmedical settings and other variables were conducted using chi-square tests with statistical significance at $\mathrm{p}<0.05$.
Overall, a doctor's office was the most common place of vaccination (39.8\%), followed by a store (18.4\%), and workplace (17.4%) (Table 1). Among vaccinated adults aged $18-49$ years, 32.2% were vaccinated at a doctor's office, 25.7% at a workplace, and 14.5% at a store. Similarly, adults aged 50-64 years most often reported vaccination at a doctor's office (38.8%), workplace (21.1%), or store (18.0%). Among

[^6]TABLE 1. Reported place of influenza vaccination among adults aged ≥ 18 years, by age group - Behavioral Risk Factor Surveillance System, United States, 2010-11 influenza season

Place	Overall		18-49 yrs		50-64 yrs		≥ 65 yrs	
	\%	(95\% CI)						
Medical settings								
Doctor's office/HMO	39.8	(38.6-40.9)	32.2	(30.0-34.5)	38.8	(37.1-40.5)	51.5	(50.2-52.9)
Hospital/emergency department	7.2	(6.6-7.9)	9.0	(7.7-10.4)	7.0	(6.2-7.9)	4.9	(4.3-5.5)
Another type of clinic/health center	7.1	(6.6-7.7)	7.8	(6.7-9.1)	6.5	(5.9-7.3)	6.7	(6.1-7.3)
Health department	4.4	(3.9-5.2)	5.3	(4.1-6.9)	4.0	(3.5-4.6)	3.8	(3.3-4.5)
Nonmedical settings								
Store*	18.4	(17.5-19.3)	14.5	(13.0-16.2)	18.0	(16.7-19.4)	24.3	(23.2-25.4)
Workplace	17.4	(16.6-18.3)	25.7	(23.9-27.6)	21.1	(19.7-22.7)	1.9	(1.5-2.4)
Senior/recreation/community center	1.4	(1.2-1.6)	0.4	(0.2-0.8)	0.8	(0.6-1.2)	3.4	(2.9-3.9)
School	1.2	(0.9-1.7)	2.0	(1.3-3.2)	1.1	(0.8-1.5)	0.3	(0.2-0.4)
Other	2.9	(2.6-3.2)	2.9	(2.3-3.7)	2.5	(2.1-3.1)	3.1	(2.7-3.6)

Abbreviations: $\mathrm{Cl}=$ confidence interval; $\mathrm{HMO}=$ health maintenance organization.

* E.g., supermarket or drug store.
adults aged ≥ 65 years, a greater percentage were vaccinated at a doctor's office (51.5%), and the second most common setting (24.3%) was a store. Overall, respondents with high-risk conditions were more likely to receive their vaccinations in a medical setting (69.4%) than those without these conditions (54.1\%) (Table 2). Additionally, respondents with high-risk conditions were more likely to receive their vaccinations in a doctor's office than those without these conditions (49.1% versus 35.7%).
By type of setting, a greater percentage of respondents overall were vaccinated in medical settings (58.6%) than nonmedical settings (41.4%) (Table 2). The percentage of non-Hispanic whites receiving their influenza vaccination in a nonmedical setting (43.6%) was greater than the percentage of non-Hispanic blacks (28.7\%) overall and in all age groups: $18-49$ years (49.8% versus 31.9%), $50-64$ years (45.9% versus 29.7%), and ≥ 65 years (34.1% versus 19.7%). The percentage of non-Hispanic whites (43.6\%) receiving their influenza vaccination in a nonmedical setting also was greater than the percentage of Hispanics (34.3%) overall and among those aged 18-49 years (49.8% versus 35.1%), and 50-64 years (45.9 versus 32.0%). Among those aged ≥ 65 years, a greater percentage of Hispanics (33.9%) were vaccinated in nonmedical settings than non-Hispanic blacks (19.7\%).
Overall, the percentage of persons vaccinated in nonmedical settings increased with education level: 27.5% for those with less than a high school education, 35.9% for high school graduates, and 46.7% for those who had attended college (Table 2). Overall, a greater proportion of persons whose last doctor visit for a routine checkup was ≥ 1 year ago (53.5%) received their vaccination in a nonmedical setting than those whose last doctor visit for a routine checkup was <1 year ago (38.8\%); similar differences were observed across all age groups. Among adults overall and persons aged 50-64 years, vaccination in a nonmedical setting was significantly more common among
those who reported not having a personal doctor than among those with a personal doctor: 48.5% versus 40.7% overall, and 53.4% versus 43.1% in the $50-64$ age group (Table 2).

Reported by

Erin D. Kennedy, DVM, Tammy A. Santibanez, PhD, Leah N. Bryan, MPH, Pascale M. Wortley, MD, Gary L. Euler, DrPH, James A. Singleton, MS, Carolyn B. Bridges, MD, Cindy W. Weinbaum, MD, Immunization Svcs Div, National Center for Immunization and Respiratory Diseases; Lisa M. Koonin, MN, Influenza Coordination Unit, Office of Infectious Diseases, CDC. Corresponding contributor: Erin D. Kennedy, edkennedy@cdc.gov, 404-718-8733.

Editorial Note

This study provides estimates of the proportion of U.S. adults in 46 and DC states receiving influenza vaccination in various medical and nonmedical settings during the 2010-11 influenza season and demonstrates the prominent role of physicians as vaccine providers and their potential influence on influenza vaccination. The most common place of vaccination for all age groups was a doctor's office. Previous studies have shown the importance of a recommendation by a health-care provider on influenza vaccination of adults (4). The findings that having had a doctor visit within the past year and having a personal doctor were associated with an increased likelihood of receiving influenza vaccination in a medical setting might be the result of health-care providers offering, recommending, or reminding patients about vaccination; these findings also likely reflect vaccination of adults with chronic conditions, who might have been more likely to have had a recent doctor visit or to have a personal doctor.
Although the majority of influenza vaccinations occurred in medical settings, an increasing proportion of influenza vaccinations took place in nonmedical settings. The proportion

TABLE 2. Percentage of adults aged ≥ 18 years receiving influenza vaccination in medical versus nonmedical settings, by age group and selected characteristics - Behavioral Risk Factor Surveillance System, United States, 2010-11 influenza season

Characteristic	Overall				18-49 yrs			
	\% medical*	(95\% CI)	\% nonmedical ${ }^{\dagger}$	(95\% CI)	\% medical	(95\% CI)	\% nonmedical	(95\% CI)
Total	58.6	(57.5-59.8)	41.4	(40.2-42.5)	54.4	(52.1-56.7)	45.6	(43.3-47.9)
Sex ${ }^{\text {§ }}$								
Men	58.1	(56.2-60.0)	41.9	(40.0-43.8)	52.0	(48.2-55.7)	48.0	(44.3-51.8)
Women	59.1	(57.7-60.4)	40.9	(39.6-42.3)	56.4	(53.5-59.2)	43.4	(40.8-46.5)
Race/Ethnicity ${ }^{\text {f }}$								
White, non-Hispanic	56.4	(55.2-57.6)	43.6	(42.4-44.8)	50.2	(47.6-52.7)	49.8	(47.3-52.4)
Black, non-Hispanic	71.3	(67.0-75.3)	28.7	(24.7-33.0)	68.1	(60.4-74.9)	31.9	(25.1-39.6)
Hispanic	65.7	(59.9-71.0)	34.3	(29.0-40.1)	64.9	(56.5-72.4)	35.1	(27.6-43.5)
Other	59.1	(53.5-64.5)	40.9	(35.5-46.2)	55.2	(46.8-63.3)	44.8	(36.7-53.2)
Education level**								
Less than high school	72.5	(68.7-76.1)	27.5	(23.9-31.3)	69.3	(60.4-77.0)	30.7	(23.0-39.6)
High school graduate	64.1	(61.9-66.2)	35.9	(33.8-38.1)	60.6	(55.5-65.5)	39.4	(34.5-44.5)
Attended college	53.3	(51.9-54.7)	46.7	(45.3-48.1)	49.7	(47.1-52.5)	50.3	(47.7-52.9)
Certain chronic conditions ${ }^{\dagger \dagger}$								
Yes	69.4	(67.4-71.3)	30.6	(28.7-32.6)	67.2	(61.6-72.3)	32.8	(27.7-38.4)
No	54.1	(52.7-55.4)	45.9	(44.6-47.3)	51.1	(48.7-53.6)	48.9	(46.4-51.3)
Time since last routine checkup ${ }^{\text {§ }}$								
$<1 \mathrm{yr}$	61.2	(60.0-62.4)	38.8	(37.6-40.0)	57.6	(54.9-60.3)	42.4	(39.7-45.1)
$\geq 1 \mathrm{yrs}$	46.5	(43.8-49.3)	53.5	(50.7-56.2)	44.3	(40.1-48.5)	55.7	(51.5-59.5)
Health insurance coverage								
Yes	58.4	(57.3-59.5)	41.6	(40.5-42.7)	53.6	(51.2-55.9)	46.4	(44.1-48.8)
No	61.0	(54.9-66.9)	39.0	(33.1-45.1)	60.8	(51.8-69.1)	39.2	(30.9-48.2)
Personal doctor ${ }^{\text {9ा! }}$								
Yes	59.3	(58.2-60.4)	40.7	(39.6-41.8)	54.8	(52.4-57.3)	45.2	(42.7-47.6)
No	51.5	(46.4-56.5)	48.5	(43.5-53.6)	51.2	(44.6-57.8)	48.8	(42.2-55.4)
Cost an obstacle to medical care								
Yes	58.9	(54.5-63.1)	41.1	(36.9-45.5)	55.1	(48.4-61.7)	44.9	(38.3-50.6)
No	58.6	(57.4-59.8)	41.4	(40.2-42.6)	54.3	(51.8-56.7)	45.7	(43.3-48.2)

See footnotes on page 784.
of adults vaccinated in stores (18.4\%) during the 2010-11 season increased in each age group compared with the 1998-99 (5) and 2006-07 influenza seasons (National Immunization Survey [NIS]-Adult, unpublished data, 2011), when 5\% and 7% of adults, respectively, were vaccinated in stores. This increase likely resulted partly from changes in state laws allowing pharmacists to administer influenza vaccinations to adults, and subsequently, more pharmacies offering influenza vaccinations. In 1999, only 22 states allowed pharmacists to administer influenza vaccinations to adults. In 2007, the number of states allowing this increased to 46, and in June 2009, all 50 states allowed pharmacists to administer influenza vaccinations (under prescribing protocols or prescription) to adults (6). The finding that adults whose last doctor visit for a routine checkup was ≥ 1 year ago were more likely to be vaccinated in a nonmedical setting suggests that the availability of influenza vaccination in nonmedical settings can complement health-care provider efforts by reaching populations less likely to be seen by providers.
Race/ethnicity was significantly associated with vaccination setting. Overall, non-Hispanic whites were more likely than
non-Hispanic blacks and Hispanics to receive their vaccinations in nonmedical settings. Additionally, persons in all age groups who had attended college were more likely to receive their influenza vaccination in a nonmedical setting than those who had not attended college. Non-Hispanic white race/ethnicity and higher education have been associated previously with vaccination in nonmedical settings $(4,5)$. This association might result from place of vaccination preferences, differences in vaccine-seeking behavior, or differences in availability of nonmedical settings offering vaccinations; workplace vaccination might not be equally available to all socioeconomic groups, and supermarkets or drug stores in low-income neighborhoods might not offer vaccinations.
Overall, when comparing similar periods, influenza vaccination coverage has increased since the 2006-07 influenza season, with an estimated 38% of adults vaccinated in 2006-07 (BRFSS, unpublished data, 2011), compared with a preliminary estimate of 41% from 43 states in 2010-11 (7). Using U.S. Census population estimates, this translates into approximately 84 million adults vaccinated in 2006-07, compared with approximately 94 million adults in 2010-11. During

TABLE 2. (Continued) Percentage of adults aged ≥ 18 years receiving influenza vaccination in medical versus nonmedical settings, by age group and selected characteristics - Behavioral Risk Factor Surveillance System, United States, 2010-11 influenza season

Characteristic	50-64 yrs				≥ 65 yrs			
	\% medical	(95\% CI)	\% nonmedical	(95\% CI)	\% medical	(95\% CI)	\% nonmedical	(95\% CI)
Total	56.3	(54.6-58.0)	43.7	(42.0-45.4)	67.0	(65.8-68.2)	33.0	(31.8-34.2)
Sex ${ }^{\text {§ }}$								
Men	56.0	(53.1-58.8)	44.0	(41.2-46.9)	69.2	(67.1-71.2)	30.8	(28.8-32.9)
Women	56.6	(54.5-58.7)	43.4	(41.3-45.5)	65.3	(63.8-66.8)	34.7	(33.2-36.2)
Race/Ethnicity ${ }^{\text {d }}$								
White, non-Hispanic	54.1	(52.2-55.9)	45.9	(44.1-47.8)	65.9	(64.6-67.2)	34.1	(32.8-35.4)
Black, non-Hispanic	70.3	(63.8-76.1)	29.7	(23.9-36.2)	80.3	(75.3-84.5)	19.7	(15.5-24.7)
Hispanic	68.0	(59.2-75.6)	32.0	(24.4-40.8)	66.1	(56.0-74.9)	33.9	(25.1-44.0)
Other	60.7	(59.2-75.6)	39.3	(32.0-47.1)	70.4	(62.6-77.1)	29.6	(22.9-37.4)
Education level**								
Less than high school	73.0	(66.0-79.0)	27.0	(21.0-34.0)	75.1	(72.0-78.8)	24.9	(21.2-29.0)
High school graduate	61.9	(58.6-65.0)	38.1	(35.0-41.4)	69.3	(67.3-71.2)	30.7	(28.8-32.7)
Attended college	51.7	(49.6-53.8)	48.3	(46.2-50.4)	62.6	(60.9-64.3)	37.4	(35.7-39.1)
Certain chronic conditions ${ }^{\dagger \dagger}$								
Yes	67.8	(65.0-70.5)	32.2	(29.5-35.0)	72.2	(70.3-74.0)	27.8	(26.0-29.7)
No	50.9	(48.8-53.0)	49.1	(47.0-51.2)	63.4	(61.8-65.0)	36.6	(35.0-38.2)
Time since last routine check-up ${ }^{\S \S}$								
$<1 \mathrm{yr}$	58.2	(56.4-60.1)	41.8	(39.9-43.6)	68.3	(67.0-69.5)	31.7	(30.5-33.0)
$\geq 1 \mathrm{yrs}$	46.1	(41.8-50.6)	53.9	(49.4-58.2)	55.2	(50.6-59.8)	44.8	(40.2-49.4)
Health insurance coverage								
Yes	55.9	(54.1-57.7)	44.1	(42.3-45.9)	67.1	(65.8-68.3)	32.9	(31.7-34.2)
No	61.0	(53.4-68.2)	39.0	(31.8-46.6)	63.6	(49.6-75.6)	36.4	(24.4-50.4)
Personal doctor ${ }^{\text {9ึ }}$								
Yes	56.9	(55.1-58.6)	43.1	(41.4-44.9)	67.2	(65.9-68.4)	32.8	(31.6-34.1)
No	46.6	(38.9-54.6)	53.4	(45.4-61.1)	62.0	(54.2-69.3)	38.0	(30.7-45.8)
Cost an obstacle to medical care								
Yes	61.4	(55.5-67.1)	38.6	(32.9-44.5)	70.4	(64.1-75.9)	29.6	(24.1-35.9)
No	55.6	(53.8-57.4)	44.4	(42.6-46.2)	66.9	(65.6-68.1)	33.1	(31.9-34.4)

Abbreviation: $\mathrm{Cl}=$ confidence interval.

* Doctor's office/health maintenance organization, health department, another type of clinic/health center, or hospital/emergency department.
${ }^{\dagger}$ Workplace, store, senior/recreation/community center, school, or other.
${ }^{\S}$ Statistically significant association of sex with vaccination setting among adults aged ≥ 65 years only.
" Statistically significant association of race/ethnicity with vaccination setting among adults overall and for all age groups.
** Statistically significant association of education level with vaccination setting among adults overall and for all age groups.
${ }^{\text {t+ }}$ Asthma, diabetes, or cardiovascular disease. Statistically significant association of having certain chronic conditions with vaccination setting among adults overall and for all age groups.
\$§ Statistically significant association of time since last routine check-up with vaccination setting among adults overall and for all age groups.
${ }^{119}$ Statistically significant association of having a personal doctor with vaccination setting among adults overall and those aged 50-64 years.
the 2006-07 influenza season, the most recent nonpandemic season for which data are available on place of vaccination, approximately 34% of vaccinees were vaccinated at a doctor's office, compared with 40% in 2010-11. This translates to approximately 28 million doses administered in a doctor's office in 2006-07, compared with approximately 37 million doses in 2010-11, an increase of approximately 33% (NISAdult, unpublished data, 2011). The estimated number of doses administered in stores increased from approximately 6 million in 2006-07 to approximately 17 million in 2010-11, an increase of approximately 180%. However, data for the 2006-07 season were obtained from NIS-Adult, and the survey methodology and coding of place differs from that of BRFSS (8). In addition, surveys might overestimate actual doses of vaccine administered (9). Therefore, estimates of total doses
administered and comparisons of numbers vaccinated in different settings in 2006-07 and 2010-11 should be interpreted with caution.
The findings in this report are subject to at least four limitations. First, influenza vaccination status and place of vaccination were based on self-reported data and therefore might be subject to recall bias or social desirability bias (9). Second, BRFSS data were obtained from landline telephone surveys and did not include households with no telephone service or households with cellular telephone service only; in addition, the BRFSS survey had a low median state CASRO response rate of 54.3%. Third, health-care workers vaccinated in medical settings might have reported that they were vaccinated at the workplace; therefore, the percentage of vaccinations in nonmedical settings might be overestimated. Finally, four states

What is already known on this topic?

During the 2009 H1N1 pandemic, many new partnerships between public health agencies and medical and nonmedical organizations were formed, increasing the number of influenza vaccination providers.

What is added by this report?

During the 2010-11 influenza season, the most common place of vaccination for all age groups was a doctor's office (39.8\%). The proportion of adults vaccinated in stores (18.4\%) increased, compared with data from the 1998-99 and 2006-07 influenza seasons.
What are the implications for public health practice?
Understanding where adults receive influenza vaccinations can help shape future influenza immunization programs, identify new potential partners for vaccination programs, and help guide development of strategies for reaching Healthy People 2020 targets for influenza vaccination of adults.
were not represented in this analysis, and estimates might differ once data from all states are available.

This report highlights the roles of both medical and nonmedical settings in influenza vaccination of adults. Limited data are available on trends in place of vaccination using similar methodologies; the last available BRFSS data for all states are from the 2001-02 influenza season, and data from 14 states were collected in 2004. Monitoring place of vaccination annually with consistent methodology can help identify new trends in place of vaccination among adults, can help shape future influenza immunization programs targeted at specific groups, and can identify potential new partnerships. These results also can help guide development of strategies for achieving Healthy People 2020 targets for influenza vaccination of adults (e.g., 80% of noninstitutionalized adults aged 18-64 years and 90% of those aged ≥ 65 years) (10).

References

1. CDC. Prevention and control of influenza with vaccines: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR 2010;59(No. RR-8).
2. Stroud C, Altevogt BM, Butler JC, Duchin JS. The Institute of Medicine's Forum on Medical and Public Health Preparedness for Catastrophic Events: regional workshop series on the 2009 H1N1 influenza vaccination campaign. Disaster Med Public Health Prep 2011;5:81-6.
3. CDC. Behavioral Risk Factor Surveillance System operational and user's guide. 2006. Atlanta, GA: US Department of Health and Human Services, CDC; 2006. Available at ftp://ftp.cdc.gov/pub/data/brfss/ userguide.pdf. Accessed May 06, 2011.
4. Santibanez TA, Mootrey GT, Euler GL, Janssen AP. Behavior and beliefs about influenza vaccine among adults aged 50-64 years. Am J Health Behav 2010;34:77-89.
5. Singleton JA, Poel AJ, Lu P, Nichols KL, Iwane MK. Where adults reported receiving influenza vaccination in the United States. Am J Infect Control 2005;33:563-70.
6. American Pharmacists Association. States where pharmacists can immunize. Washington, DC: American Pharmacists Association; 2009. Available at http://www.pharmacist.com/am/template.cfm?section= pharmacist_immunization_center $1 \&$ template $=/ \mathrm{cm} /$ contentdisplay. cfm\&contentid=21623. Accessed June 15, 2011.
7. CDC. Interim results: state-specific influenza vaccination coverageUnited States, August 2010-February 2011. MMWR 2011;60:737-43.
8. Jain N, Euler GL, Shefer A, Lu PJ, Yankey D, Markowitz L. Human papillomavirus (HPV) awareness and vaccination initiation among women in the United States, National Immunization Survey-Adult 2007. Prev Med 2009;48:426-31.
9. Zimmerman RK, Raymund M, Janosky JE, Nowalk MP, Fine MJ. Sensitivity and specificity of patient self-report of influenza and pneumococcal polysaccharide vaccinations among elderly outpatients in diverse patient strata. Vaccine 2003;21:1486-91.
10. US Department of Health and Human Services. Immunization and infectious diseases. Washington, DC: US Department of Health and Human Services; 2011. Available at http://www.healthypeople.gov/ 2020/topicsobjectives2020/objectiveslist.aspx?topicId=23. Accessed June 13, 2011.

Notes from the Field

Hantavirus Pulmonary Syndrome - Maine, April 2011

On April 25, 2011, the Maine Center for Disease Control and Prevention was notified of a suspected case of hantavirus pulmonary syndrome (HPS) in a man aged 70 years with no recent out-of-state travel. The Maine resident went to a community hospital in early April with a 5-day history of fatigue, decreased appetite, weakness, chills, myalgias, and progressive shortness of breath. On examination, he was hypoxic and tachypneic. The patient was admitted with laboratory evidence of acute renal insufficiency, leukocytosis and thrombocytopenia, and appearance of diffuse bilateral infiltrates on chest radiograph. Two days later, he was transferred to a tertiary-care facility for management of respiratory failure with hypoxemia and worsening renal insufficiency. The next day, he was intubated and mechanically ventilated. Serum specimens demonstrated high titers of hantavirus reactive immunoglobu$\operatorname{lin} M(1: 6,400)$ and immunoglobulin $G(1: 1,600)$ antibodies. Hantavirus RNA was detected in the patient's blood. The patient was discharged to a skilled nursing facility 1 month after admission and is recovering with extensive rehabilitation.
HPS is caused by hantavirus infection. The virus is transmitted to humans by exposure to excreta or direct contact with infected rodents. An investigation revealed that the patient had potential exposure to rodent excreta on his farm. A grain storage shed was not rodent-proof and had grain on the floor. The patient reportedly had climbed a ladder to place rodenticide in the upper level of the shed, where insulation was contaminated with rodent droppings.

HPS is a life-threatening illness first identified in 1993 following an outbreak of unexplained, severe pulmonary illness in the southwestern United States (1). As of December 15, 2010,
a total of 560 HPS cases from 32 states had been reported to CDC, including 529 since 1993; until this case, none of the cases had been diagnosed or contracted in Maine (2). However, potential reservoirs for pathogenic hantaviruses exist across the entire continental United States (3). This case highlights the importance of clinician and public awareness of HPS and avoidance of risk factors for hantavirus infection (i.e., exposure to rodent droppings in the home, vacation home, workplace, or campsite), even in regions of the United States that have not had documented cases previously. Early recognition of HPS can reduce mortality.

Reported by

Mohamad Mooty, MD, Imad Durra, MD, Div of Infectious Diseases, Eastern Maine Medical Center, Bangor; Vicki Rea, MPH, Patricia Snyder, MPH, Stephen D. Sears, MD, Lauren B. Ball, DO, Maine Center for Disease Control and Prevention. Adam MacNeil, PhD, Shelley Campbell, Gregory Kocher, Ute Ströher, PhD, Pierre E. Rollin, MD, Stuart T. Nichol, PhD, Div of HighConsequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases; Susan E. Manning, MD, Career Epidemiology Field Officer Program, CDC. Corresponding
contributor: Susan E. Manning, susan.manning@maine.gov, 207-287-3361.

References

1. CDC. Outbreak of acute illness-southwestern United States, 1993. MMWR 1993;42:421-4.
2. CDC. U.S. HPS cases, by state. Atlanta, GA: US Department of Health and Human Services, CDC. Available at http://www.cdc.gov/hantavirus/ surveillance/state-of-exposure.html. Accessed June 10, 2011.
3. Mills JN, Amman BR, Glass GE. Ecology of hantaviruses and their hosts in North America. Vector Borne Zoonotic Dis 2010;10:563-74.

Announcement

World Sickle Cell Awareness Day Activities, June 23-24

World Sickle Cell Awareness Day, June 19, is an opportunity to increase understanding of sickle cell disease (SCD) and how the disease affects persons and families worldwide. SCD affects an estimated 90,000 to 100,000 persons in the United States and millions of persons worldwide. The World Health Organization has estimated that SCD contributes to 5% of the deaths of children aged <5 years in some African countries.
To increase knowledge about the global burden of SCD among the international community, CDC and the Sickle Cell Disease Association of America have partnered to host World Sickle Cell Awareness Day activities June 23-24, 2011, at the Georgia World Congress Center in Atlanta, Georgia. The theme of the event is "Educate and Unite," highlighting the need to increase awareness of the global impact of SCD and the importance of uniting global support to promote and improve the health of persons with SCD. The event is free and open to the public, but registration is required. Additional information and registration is available at http://www.cdc.gov/ncbddd/ sicklecell/wscd.html.

Errata: Vol. 60, No. 21

In the report, "Vaccination Coverage Among Children in Kindergarten — United States, 2009-10 School Year," errors occurred on page 700 in the fourth sentence in the first full paragraph of the second column. The sentence should read as follows: "Although 36 grantees assessed all schools with a kindergarten class, a smaller group (Delaware, Georgia, Hawaii, Missouri, Nevada, New Mexico, North Dakota, Rhode Island, South Carolina, Virginia, and Wisconsin) assessed a random sample of schools, and Alaska assessed a nonrandom sample of schools." In addition, the last sentence before "Reported by" on page 701 should read as follows: "Nonmedical exemptions ranged from 0.2% (Rhode Island) to 5.7% (Washington) among the 45 grantees that allow nonmedical exemptions."

Percentage of Adults* Aged 18-64 Years Who Have Had Problems With Their Teeth, ${ }^{\dagger}$ by Race/Ethnicity ${ }^{\S}$ and Type of Problem National Health Interview Survey, United States, 20087

Among adults aged 18-64 years, non-Hispanic Asian adults were less likely than Hispanic, non-Hispanic white, and non-Hispanic black adults to have problems with their teeth, including bleeding gums, broken or missing teeth, loose teeth not attributable to injury, or broken or missing fillings. In addition, non-Hispanic Asian adults and Hispanic adults were less likely to have experienced toothaches or sensitive teeth than non-Hispanic white and non-Hispanic black adults.

Source: National Health Interview Survey, 2008 data. Available at http://www.cdc.gov/nchs/nhis.htm.

Notifiable Diseases and Mortality Tables

TABLE I. Provisional cases of infrequently reported notifiable diseases ($<1,000$ cases reported during the preceding year) — United States, week ending June 11, 2011 (23rd week)*

Disease	Current week	$\begin{aligned} & \text { Cum } \\ & 2011 \end{aligned}$	5-year weekly average ${ }^{\dagger}$	Total cases reported for previous years					States reporting cases during current week (No.)
				2010	2009	2008	2007	2006	
Anthrax	-	-	-	-	1	-	1	1	
Arboviral diseases ${ }^{\text {§ }}$, 9 :									
California serogroup virus disease	-	-	1	75	55	62	55	67	
Eastern equine encephalitis virus disease	-	-	0	10	4	4	4	8	
Powassan virus disease	-	-	0	8	6	2	7	1	
St. Louis encephalitis virus disease	-	-	0	10	12	13	9	10	
Western equine encephalitis virus disease	-	-	-	-	-	-	-	-	
Babesiosis	2	22	2	NN	NN	NN	NN	NN	NY (2)
Botulism, total	1	35	3	112	118	145	144	165	
foodborne	-	5	0	7	10	17	32	20	
infant	-	25	2	80	83	109	85	97	
other (wound and unspecified)	1	5	1	25	25	19	27	48	CA (1)
Brucellosis	1	29	2	114	115	80	131	121	ND (1)
Chancroid	-	10	0	30	28	25	23	33	
Cholera	-	18	0	13	10	5	7	9	
Cyclosporiasis ${ }^{\text {§ }}$	3	51	5	179	141	139	93	137	NY (1), FL (1), WA (1)
Diphtheria	-	-	-	-	-	-	-	-	
Haemophilus influenzae, ${ }^{* *}$ invasive disease (age <5 yrs):									
nonserotype b	-	48	4	197	236	244	199	175	
unknown serotype	3	117	4	223	178	163	180	179	$\mathrm{MO}(2), \mathrm{HI}(1)$
Hansen disease ${ }^{\S}$	-	21	2	97	103	80	101	66	
Hantavirus pulmonary syndrome ${ }^{\S}$	-	6	1	20	20	18	32	40	
Hemolytic uremic syndrome, postdiarrheal ${ }^{\text {§ }}$	2	37	6	266	242	330	292	288	VA (1), TN (1)
Influenza-associated pediatric mortality ${ }^{\text {, }}$, ${ }^{\text {+ }}$	2	104	2	61	358	90	77	43	CA (2)
Listeriosis	5	171	14	820	851	759	808	884	NY (2), OH (2), CA (1)
Measles ${ }^{\text {S§ }}$	2	110	4	63	71	140	43	55	FL (1), TX (1)
Meningococcal disease, invasive ${ }^{\text {If }}$:									
A, C, Y, and W-135	5	84	6	280	301	330	325	318	$\mathrm{OH}(1), \mathrm{TN}$ (1), CO (1), WA (2)
serogroup B	-	52	4	135	174	188	167	193	
other serogroup	-	5	0	12	23	38	35	32	
unknown serogroup	7	224	10	406	482	616	550	651	NYC (2), OH (1), FL (1), TX (1), CA (2)
Novel influenza A virus infections***	-	1	0	4	43,774	2	4	NN	
Plague	-	1	0	2	8	3	7	17	
Poliomyelitis, paralytic	-	-	-	-	1	-	-	-	
Polio virus Infection, nonparalytic ${ }^{\text {§ }}$	-	-	-	-	-	-	-	NN	
Psittacosis ${ }^{\text {§ }}$	-	1	0	4	9	8	12	21	
Q fever, total $^{\text {§ }}$	1	27	4	131	113	120	171	169	
acute	1	17	2	106	93	106	-	-	FL (1)
chronic	-	10	0	25	20	14	-	-	
Rabies, human	-	-	0	2	4	2	1	3	
Rubella ${ }^{\text {t+ }}$	-	2	0	6	3	16	12	11	
Rubella, congenital syndrome	-	-	0	-	2	-	-	1	
SARS-CoV ${ }^{\text {§ }}$	-	-	-	-	-	-	-	-	
Smallpox ${ }^{5}$	-	-	-	-	-	-	-	-	
Streptococcal toxic-shock syndrome ${ }^{\S}$	2	56	3	148	161	157	132	125	VT (2)
Syphilis, congenital (age <1 yr) ${ }^{\text {§§§ }}$	-	67	7	372	423	431	430	349	
Tetanus	-	2	0	10	18	19	28	41	
Toxic-shock syndrome (staphylococcal) ${ }^{\text {§ }}$	1	38	2	82	74	71	92	101	GA (1)
Trichinellosis	-	7	0	7	13	39	5	15	
Tularemia	1	13	5	124	93	123	137	95	IN (1)
Typhoid fever	2	139	6	468	397	449	434	353	GA (1), CA (1)
Vancomycin-intermediate Staphylococcus aureus ${ }^{\text {§ }}$	1	25	1	91	78	63	37	6	NY (1)
Vancomycin-resistant Staphylococcus aureus ${ }^{\text {§ }}$	-	-	-	2	1	-	2	1	
Vibriosis (noncholera Vibrio species infections) ${ }^{\text {§ }}$	8	142	9	848	789	588	549	NN	MD (2), FL (6)
Viral hemorrhagic fever ${ }^{\text {man }}$	-	-	-	1	NN	NN	NN	NN	
Yellow fever	-	-	-	-	-	-	-	-	

See Table 1 footnotes on next page.

TABLE I. (Continued) Provisional cases of infrequently reported notifiable diseases ($<1,000$ cases reported during the preceding year) - United States, week ending June 11, 2011 (23 rd week)*

[^7]FIGURE I. Selected notifiable disease reports, United States, comparison of provisional 4-week totals June 11, 2011, with historical data

* Ratio of current 4-week total to mean of 154-week totals (from previous, comparable, and subsequent 4-week periods for the past 5 years). The point where the hatched area begins is based on the mean and two standard deviations of these 4 -week totals.

Notifiable Disease Data Team and 122 Cities Mortality Data Team

Jennifer Ward, MS
Deborah A. Adams Rosaline Dhara
Willie J. Anderson Pearl C. Sharp
Lenee Blanton Michael S. Wodajo

TABLE II. Provisional cases of selected notifiable diseases, United States, weeks ending June 11, 2011, and June 12, 2010 (23rd week)*

Reporting area	Chlamydia trachomatis infection					Coccidioidomycosis					Cryptosporidiosis				
	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2011 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2010 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2011 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2010 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2011 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2010 \end{aligned}$
		Med	Max				Med	Max				Med	Max		
United States	12,819	25,537	31,175	555,119	564,592	75	0	567	6,742	NN	60	109	374	1,704	2,612
New England	705	841	2,043	18,250	17,259	-	0	1	1	NN	3	5	27	85	217
Connecticut	275	234	1,557	3,479	4,022	-	0	0	-	NN	-	0	22	22	77
Maine ${ }^{\dagger}$	-	55	100	1,215	1,095	-	0	0	-	NN	-	0	7	2	25
Massachusetts	357	406	861	9,766	9,058	-	0	0	-	NN	-	2	9	32	53
New Hampshire	34	53	81	1,273	988	-	0	1	1	NN	-	1	3	10	29
Rhode Island ${ }^{\dagger}$	39	67	154	1,869	1,556	-	0	0	-	NN	-	0	2	1	9
Vermont ${ }^{\dagger}$	-	26	84	648	540	-	0	0	-	NN	3	1	5	18	24
Mid. Atlantic	1,635	3,313	5,069	72,427	74,245	-	0	1	2	NN	11	15	38	263	255
New Jersey	68	492	684	9,494	11,623	-	0	0	-	NN	-	1	4	17	12
New York (Upstate)	715	710	2,099	15,653	14,116	-	0	0	-	NN	4	4	13	57	56
New York City	246	1,146	2,612	24,713	27,931	-	0	0	-	NN	-	2	6	23	24
Pennsylvania	606	953	1,216	22,567	20,575	-	0	1	2	NN	7	8	26	166	163
E.N. Central	1,224	4,022	7,039	84,436	88,268	-	0	3	21	NN	17	25	137	405	684
Illinois	22	1,141	1,320	20,168	26,259	-	0	0	-	NN	-	2	21	4	86
Indiana	232	450	3,376	12,188	7,328	-	0	0	-	NN	-	4	15	41	110
Michigan	673	942	1,397	20,942	22,350	-	0	3	14	NN	2	5	18	95	131
Ohio	137	1,000	1,138	21,496	22,448	-	0	3	7	NN	13	7	24	144	152
Wisconsin	160	460	559	9,642	9,883	-	0	0	-	NN	2	8	65	121	205
W.N. Central	531	1,429	1,617	30,701	31,915	-	0	1	1	NN	4	13	99	129	413
Iowa	5	207	240	4,410	4,777	-	0	0	-	NN	-	4	25	19	87
Kansas	26	188	287	4,135	4,349	-	0	0	-	NN	-	1	6	3	37
Minnesota	-	291	354	5,104	6,818	-	0	0	-	NN	-	2	22	-	127
Missouri	367	524	770	12,250	11,354	-	0	0	-	NN	2	3	29	44	64
Nebraska ${ }^{\dagger}$	118	102	218	2,672	2,264	-	0	1	1	NN	2	3	26	49	45
North Dakota	1	41	90	664	974	-	0	0	-	NN	-	0	9	7	11
South Dakota	14	64	93	1,466	1,379	-	0	0	-	NN	-	1	6	7	42
S. Atlantic	3,754	5,117	6,526	119,428	114,437	-	0	2	3	NN	11	18	53	322	392
Delaware	85	83	220	1,956	1,863	-	0	0	-	NN	-	0	1	2	3
District of Columbia	-	105	180	1,947	2,401	-	0	0	-	NN	-	0	1	3	2
Florida	737	1,484	1,706	33,073	33,038	-	0	0	-	NN	1	6	19	86	153
Georgia	705	911	2,416	22,218	20,528	-	0	0	-	NN	5	5	11	112	127
Maryland ${ }^{\dagger}$	122	485	1,125	9,196	10,082	-	0	2	3	NN	2	1	3	20	15
North Carolina	615	756	1,477	20,497	20,089	-	0	0	-	NN	-	0	17	23	30
South Carolina ${ }^{\dagger}$	715	531	946	12,959	11,384	-	0	0	-	NN	1	2	8	43	21
Virginia ${ }^{+}$	710	662	970	15,725	13,436	-	0	0	-	NN	2	1	9	25	35
West Virginia	65	77	121	1,857	1,616	-	0	0	-	NN	-	0	5	8	6
E.S. Central	1,852	1,820	3,315	40,070	39,160	-	0	0	-	NN	2	4	19	61	82
Alabama ${ }^{\dagger}$	586	547	1,564	11,414	10,854	-	0	0	-	NN	-	1	13	8	33
Kentucky	488	268	2,352	7,147	6,797	-	0	0	-	NN	-	1	6	19	26
Mississippi	506	390	780	8,448	9,590	-	0	0	-	NN	-	0	2	11	5
Tennessee ${ }^{\dagger}$	272	592	795	13,061	11,919	-	0	0	-	NN	2	1	5	23	18
W.S. Central	505	3,290	4,723	69,191	79,773	-	0	1	1	NN	1	7	33	80	128
Arkansas ${ }^{\dagger}$	-	303	440	6,854	6,782	-	0	0	-	NN	1	0	3	7	14
Louisiana	428	320	1,052	4,365	13,141	-	0	1	1	NN	-	0	6	10	17
Oklahoma	77	231	1,371	5,071	5,859	-	0	0	-	NN	-	0	8	-	23
Texas ${ }^{\dagger}$	-	2,369	3,107	52,901	53,991	-	0	0	-	NN	-	4	24	63	74
Mountain	697	1,669	2,155	35,934	36,430	63	0	428	5,316	NN	7	10	30	180	213
Arizona	153	514	678	9,679	11,919	59	0	424	5,236	NN	1	1	3	12	14
Colorado	244	412	846	11,004	8,433	-	0	0		NN	3	2	10	50	51
Idaho ${ }^{+}$	-	60	199	1,019	1,651	-	0	0	-	NN	2	2	7	36	38
Montana ${ }^{\dagger}$	49	63	88	1,534	1,354	1	0	1	2	NN	-	1	5	24	27
Nevada ${ }^{\dagger}$	149	194	380	4,713	4,473	3	0	4	40	NN	-	0	7	3	6
New Mexico ${ }^{\dagger}$	62	203	1,183	4,396	4,710	-	0	4	30	NN	1	2	12	39	38
Utah	25	127	175	2,751	2,940	-	0	2	5	NN	-	1	5	10	27
Wyoming ${ }^{\dagger}$	15	38	90	838	950	-	0	2	3	NN	-	0	3	6	12
Pacific	1,916	3,768	6,559	84,682	83,105	12	0	143	1,397	NN	4	11	27	179	228
Alaska	-	116	157	2,472	2,756	-	0	0	-	NN	-	0	3	4	2
California	1,336	2,884	5,763	64,809	62,791	12	0	143	1,396	NN	4	6	19	104	130
Hawaii	-	108	141	2,139	2,776	-	0	0	-	NN	-	0	0	-	1
Oregon	294	239	524	5,995	5,344	-	0	1	1	NN	-	4	13	67	63
Washington	286	412	520	9,267	9,438	-	0	0	-	NN	-	1	9	4	32
Territories															
American Samoa	-	0	0	-	-	-	0	0	-	NN	N	0	0	N	N
C.N.M.I.	-	-	-	-	-	-	-	-	-	NN	-	-	-	-	-
Guam	-	9	44	189	82	-	0	0	-	NN	-	0	0	-	-
Puerto Rico	127	105	349	2,677	2,791	-	0	0	-	NN	N	0	0	N	N
U.S. Virgin Islands	-	14	27	328	241	-	0	0	-	NN	-	0	0	-	-

C.N.M.I.: Commonwealth of Northern Mariana Islands.

U: Unavailable. -: No reported cases. N: Not reportable. NN: Not Nationally Notifiable. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum.

* Case counts for reporting year 2010 and 2011 are provisional and subject to change. For further information on interpretation of these data, see http://www.cdc.gov/osels/ph_surveillance/ nndss/phs/files/ProvisionalNationa\%20NotifiableDiseasesSurveillanceData20100927.pdf. Data for TB are displayed in Table IV, which appears quarterly.
${ }^{\dagger}$ Contains data reported through the National Electronic Disease Surveillance System (NEDSS).

TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending June 11, 2011, and June 12, 2010 (23rd week)*

$\underline{\text { Reporting area }}$	Dengue Virus Infection									
	Dengue Fever ${ }^{\dagger}$					Dengue Hemorrhagic Fever ${ }^{\S}$				
	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2011 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2010 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2011 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2010 \\ & \hline \end{aligned}$
		Med	Max				Med	Max		
United States	-	5	52	28	123	-	0	2	-	3
New England	-	0	3	1	1	-	0	0	-	-
Connecticut	-	0	0	-	-	-	0	0	-	-
Maine ${ }^{\text {f }}$	-	0	2	-	1	-	0	0	-	-
Massachusetts	-	0	0	-	-	-	0	0	-	-
New Hampshire	-	0	0	-	-	-	0	0	-	-
Rhode Island"	-	0	1	-	-	-	0	0	-	-
Vermont ${ }^{\text {¹}}$	-	0	1	1	-	-	0	0	-	-
Mid. Atlantic	-	1	25	7	42	-	0		-	2
New Jersey	-	0	5	-	4	-	0	0	-	-
New York (Upstate)	-	0	5	-	5	-	0	1	-	1
New York City	-	1	17	-	28	-	0	1	-	1
Pennsylvania	-	0	3	7	5	-	0	0	-	-
E.N. Central	-	0	5	5	10	-	0	1	-	-
Illinois	-	0	1	2	-	-	0	0	-	-
Indiana	-	0	2	1	2	-	0	0	-	-
Michigan	-	0	2	-	2	-	0	0	-	-
Ohio	-	0	2	-	5	-	0	0	-	-
Wisconsin	-	0	2	2	1	-	0	1	-	-
W.N. Central	-	0	6	-	8	-	0	1	-	-
Iowa	-	0	1	-	-	-	0	0	-	-
Kansas	-	0	1	-	-	-	0	0	-	-
Minnesota	-	0	1	-	7	-	0	0	-	-
Missouri	-	0	0	-	-	-	0	0	-	-
Nebraska ${ }^{\text {a }}$	-	0	6	-	-	-	0	0	-	-
North Dakota	-	0	0	-	1	-	0	0	-	-
South Dakota	-	0	0	-	-	-	0	1	-	-
S. Atlantic	-	2	19	10	46	-	0	1	-	1
Delaware	-	0	0	-	-	-	0	0	-	-
District of Columbia	-	0	0	-	-	-	0	0	-	-
Florida	-	1	14	9	38	-	0	1	-	1
Georgia	-	0	2	-	4	-	0	0	-	-
Maryland ${ }^{\text {" }}$	-	0	0	-	-	-	0	0	-	-
North Carolina	-	0	2	1	-	-	0	0	-	-
South Carolina ${ }^{\text {a }}$	-	0	3	-	1	-	0	0	-	-
Virginial	-	0	3	-	3	-	0	0	-	-
West Virginia	-	0	1	-	-	-	0	0	-	-
E.S. Central	-	0	2	-	-	-	0	0	-	-
Alabama ${ }^{\text {a }}$	-	0	2	-	-	-	0	0	-	-
Kentucky	-	0	1	-	-	-	0	0	-	-
Mississippi	-	0	0	-	-	-	0	0	-	-
Tennesseef	-	0	1	-	-	-	0	0	-	-
W.S. Central	-	0	1	-	-	-	0	1	-	-
Arkansas"	-	0	0	-	-	-	0	1	-	-
Louisiana	-	0	0	-	-	-	0	0	-	-
Oklahoma	-	0	1	-	-	-	0	0	-	-
Texas ${ }^{\text {a }}$	-	0	1	-	-	-	0	0	-	-
Mountain	-	0	2	1	3	-	0	0	-	-
Arizona	-	0	2	1	1	-	0	0	-	-
Colorado	-	0	0	-	-	-	0	0	-	-
Idaho ${ }^{\text {a }}$	-	0	1	-	-	-	0	0	-	-
Montana ${ }^{\text {a }}$	-	0	1	-	-	-	0	0	-	-
Nevada ${ }^{\text {a }}$	-	0	1	-	1	-	0	0	-	-
New Mexicof	-	0	0	-	1	-	0	0	-	-
Utah	-	0	0	-	-	-	0	0	-	-
Wyoming ${ }^{\text {a }}$	-	0	0	-	-	-	0	0	-	-
Pacific	-	0	7	4	13	-	0	0	-	-
Alaska	-	0	0	-	1	-	0	0	-	-
California	-	0	5	1	9	-	0	0	-	-
Hawaii	-	0	0	-	-	-	0	0	-	-
Oregon	-	0	0	-	-	-	0	0	-	-
Washington	-	0	2	3	3	-	0	0	-	-
Territories										
American Samoa	-	0	0	-	-	-	0	0	-	-
C.N.M.I.	-	-	-	-	-	-	-	-	-	-
Guam	-	0	0	-	-	-	0	0	-	-
Puerto Rico	-	45	454	229	2,038	-	1	20	1	63
U.S. Virgin Islands	-	0	0	-	-	-	0	0	-	-

C.N.M.I.: Commonwealth of Northern Mariana Islands.

U: Unavailable. -: No reported cases. N: Not reportable. NN: Not Nationally Notifiable. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum.

* Case counts for reporting year 2010 and 2011 are provisional and subject to change. For further information on interpretation of these data, see http://www.cdc.gov/osels/ph_surveillance/ nndss/phs/files/ProvisionalNationa\%20NotifiableDiseasesSurveillanceData20100927.pdf. Data for TB are displayed in Table IV, which appears quarterly.
${ }^{\dagger}$ Dengue Fever includes cases that meet criteria for Dengue Fever with hemorrhage, other clinical and unknown case classifications.
§ DHF includes cases that meet criteria for dengue shock syndrome (DSS), a more severe form of DHF.
${ }^{9}$ Contains data reported through the National Electronic Disease Surveillance System (NEDSS).

TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending June 11, 2011, and June 12, 2010 (23rd week)*

Reporting area	Giardiasis					Gonorrhea					Haemophilus influenzae, invasive ${ }^{\dagger}$ All ages, all serotypes				
	Current week	Previous 52 weeks		Cum2011	$\begin{aligned} & \text { Cum } \\ & 2010 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2011 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2010 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2011 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2010 \end{aligned}$
		Med	Max				Med	Max				Med	Max		
United States	147	341	549	5,442	7,646	3,044	5,914	7,486	122,925	129,868	36	61	141	1,453	1,465
New England	3	26	55	402	647	75	100	206	2,080	2,294	-	4	9	84	85
Connecticut	-	5	12	85	119	35	41	150	823	1,043	-	0	6	21	18
Maine ${ }^{\text {§ }}$	1	3	11	43	76	-	2	7	63	92	-	0	2	11	5
Massachusetts	-	13	25	176	274	37	49	80	1,000	943	-	2	6	37	45
New Hampshire	-	2	10	30	75	3	2	7	56	68	-	0	2	8	7
Rhode Island ${ }^{\S}$	-	1	7	7	33	-	5	15	121	120	-	0	2	3	7
Vermont ${ }^{\text {® }}$	2	3	10	61	70	-	0	8	17	28	-	0	3	4	3
Mid. Atlantic	30	62	106	1,113	1,284	368	717	1,121	15,546	14,759	9	11	32	297	279
New Jersey	-	8	22	112	175	13	118	172	2,432	2,487	-	2	7	51	49
New York (Upstate)	20	22	72	377	438	155	113	271	2,421	2,185	3	3	18	77	75
New York City	7	17	30	337	364	58	239	497	5,148	5,190	2	2	5	50	49
Pennsylvania	3	15	27	287	307	142	260	364	5,545	4,897	4	4	11	119	106
E.N. Central	11	53	99	886	1,319	349	1,053	2,091	22,059	23,639	3	11	19	262	228
Illinois	-	10	31	157	299	6	298	369	5,014	6,449	-	3	9	68	81
Indiana	-	7	15	95	151	49	117	1,018	3,139	2,057	-	2	7	46	46
Michigan	3	11	25	182	288	213	248	490	5,288	6,128	-	1	4	28	19
Ohio	6	17	29	326	355	45	320	383	6,658	6,980	2	3	7	82	52
Wisconsin	2	9	35	126	226	36	98	130	1,960	2,025	1	2	5	38	30
W.N. Central	8	28	73	370	791	156	295	363	6,311	6,126	3	4	9	70	103
Iowa	1	5	12	88	115	3	36	57	801	755	-	0	0	7	1
Kansas	-	2	10	34	95	6	39	62	811	882	-	0	2	7	12
Minnesota	-	9	33	-	297	-	38	62	680	933	-	0	5	-	39
Missouri	5	8	26	138	153	125	143	181	3,190	2,843	3	1	5	37	37
Nebraska§	2	4	9	71	81	22	24	49	522	491	-	0	3	18	8
North Dakota	-	0	12	12	9	-	3	11	61	76	-	0	6	7	6
South Dakota	-	2	5	27	41	-	12	20	246	146	-	0	1	1	-
S. Atlantic	48	67	127	1,102	1,546	1,064	1,475	1,879	31,649	33,833	8	15	30	364	368
Delaware	-	0	5	10	14	11	17	48	404	422	-	0	2	3	4
District of Columbia	-	1	5	11	22	-	39	70	718	885	-	0	0	-	-
Florida	23	34	75	484	819	231	379	486	8,373	8,789	6	5	12	133	94
Georgia	12	15	51	349	295	231	313	891	6,757	6,900	-	3	7	74	85
Maryland ${ }^{\text {§ }}$	10	4	9	92	140	24	129	246	2,291	2,890	1	1	4	28	27
North Carolina	N	0	0	N	N	216	266	490	6,604	6,663	-	2	9	38	51
South Carolina ${ }^{\text {§ }}$	-	2	9	44	52	237	161	257	3,654	3,409	-	1	5	32	50
Virginia§	3	8	32	95	188	105	122	189	2,481	3,668	1	1	8	47	46
West Virginia	-	0	8	17	16	9	14	26	367	207	-	0	9	9	11
E.S. Central	2	4	11	64	66	509	491	1,007	10,544	10,485	7	3	10	100	92
Alabama§	2	4	11	64	66	159	160	406	3,432	3,160	2	1	4	31	15
Kentucky	N	0	0	N	N	146	73	712	1,877	1,711	-	1	4	13	15
Mississippi	N	0	0	N	N	139	115	216	2,211	2,647	-	0	2	10	8
Tennessee§	N	0	0	N	N	65	144	194	3,024	2,967	5	1	5	46	54
W.S. Central	2	5	17	68	142	159	855	1,664	17,264	21,281	1	3	26	63	67
Arkansas§	2	2	9	38	39	-	100	138	2,067	1,981	-	0	3	14	11
Louisiana	-	3	12	30	61	137	99	509	1,149	3,727	1	0	4	22	16
Oklahoma	-	0	5	-	42	22	78	332	1,440	1,677	1	1	19	26	35
Texas§	N	0	0	N	N	-	598	867	12,608	13,896	-	0	4	1	5
Mountain	21	28	58	440	699	75	190	256	4,045	4,095	3	5	12	135	169
Arizona	-	3	8	50	61	26	63	92	1,330	1,429	-	2	6	59	65
Colorado	17	12	27	208	296	21	48	91	963	1,150	3	1	5	31	43
Idahos ${ }^{\text {® }}$	2	3	9	55	95	-	2	14	42	48	-	0	2	7	9
Montana§	-	1	6	20	57	1	1	5	41	53	-	0	1	2	2
Nevada§	2	1	11	32	25	24	33	103	888	784	-	0	2	9	5
New Mexico§	-	2	6	21	35	2	28	98	673	453	-	1	4	21	21
Utah	-	4	13	42	109	1	4	10	89	159	-	0	3	6	19
Wyoming ${ }^{\S}$	-	0	5	12	21	-	0	4	19	19	-	0	1	-	5
Pacific	22	52	129	997	1,152	289	627	807	13,427	13,356	2	3	10	78	74
Alaska	-	2	6	25	37	-	21	34	420	622	-	0	2	8	12
California	15	33	68	677	709	223	515	695	11,016	10,818	-	0	6	11	14
Hawaii		1	4	14	24	-	14	26	283	300	2	0	3	14	11
Oregon	-	8	20	156	212	29	22	40	540	450	-	1	6	44	33
Washington	7	9	57	125	170	37	59	86	1,168	1,166	-	0	2	1	4
Territories															
American Samoa	-	0	0	-	-	-	0	0	-	-	-	0	0	-	-
C.N.M.I.	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Guam	-	0	1	-	1	-	0	5	6	5	-	0	0	-	-
Puerto Rico	-	1	7	10	38	8	6	12	163	123	-	0	0	-	1
U.S. Virgin Islands	-	0	0	-	-	-	3	7	49	50	-	0	0	-	-

C.N.M.I.: Commonwealth of Northern Mariana Islands.

U: Unavailable. -: No reported cases. N: Not reportable. NN: Not Nationally Notifiable. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum,

* Case counts for reporting year 2010 and 2011 are provisional and subject to change. For further information on interpretation of these data, see http://www.cdc.gov/osels/ph_surveillance/ nndss/phs/files/ProvisionalNationa\%20NotifiableDiseasesSurveillanceData20100927.pdf. Data for TB are displayed in Table IV, which appears quarterly.
\pm Data for H. influenzae (age <5 yrs for serotype b, nonserotype b, and unknown serotype) are available in Table .
${ }^{\S}$ Contains data reported through the National Electronic Disease Surveillance System (NEDSS).

TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending June 11, 2011, and June 12, 2010 (23rd week)*

Reporting area	Hepatitis (viral, acute), by type														
	A					B					C				
	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2011 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2010 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2011 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2010 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2011 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2010 \end{aligned}$
		Med	Max				Med	Max				Med	Max		
United States	12	26	74	419	677	24	59	167	924	1,375	6	17	39	369	343
New England	-	1	6	12	56	-	0	5	21	29	-	1	4	20	29
Connecticut	-	0	4	5	12	-	0	4	7	8	-	0	3	14	16
Maine ${ }^{\text {+ }}$	-	0	1	1	3	-	0	2	5	9	-	0	2	3	2
Massachusetts	-	0	5	3	35	-	0	3	8	7	-	0	1	1	11
New Hampshire	-	0	1	-	-	-	0	1	1	4	N	0	0	N	N
Rhode Island ${ }^{\dagger}$	-	0	1	1	6	U	0	0	U	U	U	0	0	U	U
Vermont ${ }^{\dagger}$	-	0	1	2	-	-	0	1	-	1	-	0	1	2	-
Mid. Atlantic	1	4	12	82	107	4	5	11	117	140	1	1	6	30	43
New Jersey	-	1	4	10	30	-	1	4	23	38	-	0	4	-	9
New York (Upstate)	-	1	4	20	24	2	1	9	22	22	1	1	4	17	20
New York City	1	1	6	28	30	-	1	5	34	43	-	0	1	-	1
Pennsylvania	-	1	3	24	23	2	1	4	38	37	-	0	2	13	13
E.N. Central	3	3	9	75	79	-	7	23	120	224	-	3	10	83	41
Illinois	-	1	3	11	20	-	2	7	33	52	-	0	1	1	-
Indiana	-	0	3	10	9	-	1	6	13	32	-	0	4	29	16
Michigan	3	1	5	29	26	-	2	5	37	59	-	1	7	50	19
Ohio	-	1	5	22	15	-	1	16	25	55	-	0	1	2	3
Wisconsin	-	0	2	3	9	-	1	3	12	26	-	0	1	1	3
W.N.Central	-	1	25	16	23	-	2	16	54	59	-	0	6	2	6
lowa	-	0	3	1	4	-	0	1	4	10	-	0	0	-	-
Kansas	-	0	2	3	7	-	0	2	6	4	-	0	1	2	-
Minnesota	-	0	22	2	1	-	0	15	2	2	-	0	6	-	3
Missouri	-	0	1	5	9	-	1	4	35	33	-	0	1	-	2
Nebraska ${ }^{\dagger}$	-	0	4	3	2	-	0	3	6	9	-	0	1	-	1
North Dakota	-	0	3	-	-	-	0	0	-	-	-	0	0	-	-
South Dakota	-	0	2	2	-	-	0	1	1	1	-	0	0	-	-
S. Atlantic	5	5	14	100	144	9	14	33	261	391	3	4	10	82	79
Delaware	-	0	1	1	5	-	0	1	-	17	U	0	0	U	U
District of Columbia	-	0	0	-	1	-	0	0	-	3	-	0	0	-	2
Florida	3	2	7	37	51	5	4	11	90	137	-	1	5	20	23
Georgia	1	1	4	25	14	-	2	8	42	82	-	1	3	13	10
Maryland ${ }^{\dagger}$	-	0	2	10	12	-	1	4	25	28	1	0	2	13	11
North Carolina	-	0	4	8	28	1	2	16	58	33	-	0	4	19	21
South Carolina ${ }^{\dagger}$	-	0	2	4	17	-	1	4	13	24	-	0	1	-	-
Virginia ${ }^{\text {a }}$	1	1	6	11	15	1	1	7	28	39	1	0	2	8	6
West Virginia	-	0	5	4	1	2	0	18	5	28	1	0	5	9	6
	-	0	6	15	19	3	8	14	164	136	2	3	8	66	60
Alabama ${ }^{\dagger}$	-	0	2	-	4	-	1	4	33	28	-	0	1	3	2
Kentucky	-	0	6	2	9	-	3	8	49	43	-	2	6	28	40
Mississippi	-	0	1	2	1	-	1	3	15	15	U	0	0	U	U
Tennessee ${ }^{\dagger}$	-	0	5	11	5	3	3	8	67	50	2	1	5	35	18
W.S.Central	2	2	15	37	66	6	9	67	104	208	-	2	11	41	28
Arkansas ${ }^{\text { }}$	-	0	1	-	-	-	1	4	16	31	-	0	1	-	-
Louisiana	-	0	1	1	5	-	1	4	18	23	-	0	2	4	1
Oklahoma	-	0	4	1	1	-	2	16	20	32	-	1	10	21	11
Texas ${ }^{\dagger}$	2	2	11	35	60	6	4	45	50	122	-	0	3	16	16
Mountain	-	2	8	31	74	1	2	7	33	61	-	1	4	19	26
Arizona	-	0	4	7	34	-	0	2	11	13	U	0	0	U	U
Colorado	-	0	2	8	19	-	0	5	3	17	-	0	3	2	8
Idaho ${ }^{+}$	-	0	2	4	4	-	0	1	2	4	-	0	2	6	6
Montana ${ }^{\dagger}$		0	1	3	4	-	0	0	-	-	-	0	1	2	-
Nevada ${ }^{\dagger}$	-	0	3	4	6	1	0	3	14	19	-	0	2	6	2
New Mexico ${ }^{\dagger}$	-	0	1	3	3	-	0	2	2	2	-	0	1	2	7
Utah	-	0	2	-	4	-	0	1	1	6	-	0	2	,	3
Wyoming ${ }^{\dagger}$	-	0	3	2	-	-	0	1	-	-	-	0	1	1	-
Pacific	1	3	15	51	109	1	4	25	50	127	-	1	12	26	31
Alaska	-	0	1	1	-	-	0	1	2	1	U	0	1	U	U
California	-	3	15	33	85	-	2	22	19	86	-	0	4	7	13
Hawaii	-	0	2	4	5	-	0	1	4	3	U	0	0	U	U
Oregon	1	0	2	4	9	-	0	3	14	22	-	0	3	8	8
Washington	1	0	2	9	10	1	1	4	11	15	-	0	5	10	10
Territories															
American Samoa	-	0	0	-	-	-	0	0	-	-	-	0	0	-	-
C.N.M.I.	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Guam	-	0	5	8	10	-	1	8	28	18	-	0	7	10	19
Puerto Rico	-	0	2	2	9	-	0	3	2	11	N	0	0	N	N
U.S. Virgin Islands	-	0	0	-	-	-	0	0	-	-	-	0	0	-	-

C.N.M.I.: Commonwealth of Northern Mariana Islands.

U: Unavailable. -: No reported cases. N: Not reportable. NN: Not Nationally Notifiable. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum.

* Case counts for reporting year 2010 and 2011 are provisional and subject to change. For further information on interpretation of these data, see http://www.cdc.gov/osels/ph_surveillance/ nndss/phs/files/ProvisionalNationa\%20NotifiableDiseasesSurveillanceData20100927.pdf. Data for TB are displayed in Table IV, which appears quarterly.
${ }^{\dagger}$ Contains data reported through the National Electronic Disease Surveillance System (NEDSS).

TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending June 11, 2011, and June 12, 2010 (23rd week)*

Reporting area	Legionellosis					Lyme disease					Malaria				
	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2011 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2010 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2011 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2010 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2011 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2010 \\ & \hline \end{aligned}$
		Med	Max				Med	Max				Med	Max		
United States	38	51	128	777	1,022	233	281	1,828	4,139	8,939	15	28	114	428	563
New England	1	4	16	36	57	11	73	503	697	3,135	-	1	20	16	37
Connecticut	1	1	6	10	11	2	28	213	358	1,173	-	0	20	-	2
Maine ${ }^{\dagger}$	-	0	3	3	3	2	8	62	82	160	-	0	1	2	3
Massachusetts	-	2	10	17	32	-	18	223	94	1,195	-	0	4	9	26
New Hampshire	-	0	5	2	3	2	13	69	108	531	-	0	2	2	1
Rhode Island ${ }^{\dagger}$	-	0	4	1	6	-	1	40	4	24	-	0	4	-	4
Vermont ${ }^{\dagger}$	-	0	2	3	2	5	4	28	51	52	-	0	1	3	1
Mid. Atlantic	5	14	53	166	238	175	136	662	2,285	3,011	3	9	22	99	183
New Jersey	-	1	18	1	37	1	38	234	602	1,377	-	1	6	8	40
New York (Upstate)	5	5	19	74	63	56	36	159	403	554	2	1	6	16	29
New York City	-	2	17	28	46	-	7	31	2	235	-	4	13	53	88
Pennsylvania	-	5	19	63	92	118	60	279	1,278	845	1	1	4	22	26
E.N. Central	7	10	44	142	184	5	21	373	302	1,036	2	3	9	49	54
Illinois	-	1	14	15	31	-	1	17	6	39	-	1	6	18	22
Indiana	-	1	6	25	15	-	0	7	10	33	-	0	2	4	7
Michigan	1	3	20	29	33	1	1	14	10	11	1	0	4	8	6
Ohio	6	4	15	73	81	-	0	9	6	6	1	1	5	18	15
Wisconsin	-	0	5	-	24	4	18	345	270	947	-	0	2	1	4
W.N. Central	2	2	9	23	45	-	9	188	4	525	-	1	45	4	24
lowa	-	0	2	3	3	-	0	10	2	28	-	0	2	1	6
Kansas	-	0	2	2	4	-	0	1	1	6	-	0	2	2	3
Minnesota	-	0	8	-	15	-	3	181	-	487	-	0	45	-	3
Missouri	2	0	5	16	14	-	0	1	-	1	-	0	3	-	3
Nebraska ${ }^{\dagger}$	-	0	2	-	4	-	0	2	1	3	-	0	1	1	7
North Dakota	-	0	1	1	2	-	0	10	-	-	-	0	1	-	-
South Dakota	-	0	2	1	3	-	0	1	-	-	-	0	1	-	2
S. Atlantic	10	9	26	156	212	39	56	178	764	1,104	5	7	41	146	152
Delaware	-	0	3	3	5	7	10	33	216	281	-	0	1	2	2
District of Columbia	-	0	3	4	12	-	1	5	8	10	-	0	2	5	7
Florida	5	3	9	66	65	4	1	8	23	21	4	2	7	38	47
Georgia	-	1	4	9	31	-	0	2	3	4	-	1	7	27	27
Maryland ${ }^{\dagger}$	2	1	6	24	46	12	17	103	261	501	-	1	21	31	23
North Carolina	-	1	6	21	19	-	1	9	18	30	-	0	13	13	18
South Carolina ${ }^{\dagger}$	-	0	2	5	6	-	0	3	4	15	-	0	1	1	3
Virginia ${ }^{\text {a }}$	3	1	9	20	23	16	19	82	216	228	1	1	5	29	25
West Virginia	-	0	2	4	5	-	0	29	15	14	-	0	1	-	-
E.S. Central	6	2	9	61	59	1	0	4	12	19	-	0	3	9	11
Alabama ${ }^{\dagger}$	1	0	2	10	6	-	0	2	5	-	-	0	1	2	2
Kentucky	-	0	4	10	10	-	0	1	-	2	-	0	1	4	3
Mississippi	-	0	2	6	7	-	0	0	\bigcirc	-	-	0	2	1	-
Tennessee ${ }^{\dagger}$	5	1	7	35	36	1	0	4	7	17	-	0	2	2	6
W.S. Central	1	3	13	34	46	1	1	29	16	35	-	1	18	20	31
Arkansas ${ }^{\dagger}$	-	0	2	3	8	-	0	0	-	-	-	0	1	1	1
Louisiana	-	0	3	6	2	-	0	1	-	-	-	0	1	-	1
Oklahoma	-	0	2	2	5	-	0	0	-	-	-	0	1	2	3
Texas ${ }^{\dagger}$	1	2	11	23	31	1	1	29	16	35	-	1	17	17	26
Mountain	-	2	10	33	67	-	0	3	4	6	2	1	4	22	23
Arizona	-	1	7	12	19	-	0	1	3	1	2	0	3	11	9
Colorado	-	0	2	4	14	-	0	1	-	-	-	0	3	5	8
Idaho ${ }^{\dagger}$	-	0	1	2	1	-	0	2	-	2	-	0	1	1	-
Montana ${ }^{\dagger}$	-	0	1	-	2	-	0	1	-	-	-	0	1	-	1
Nevada ${ }^{\dagger}$	-	0	2	8	14	-	0	1	-	-	-	0	2	3	2
New Mexico ${ }^{\dagger}$	-	0	2	2	2	-	0	2	1	1	-	0	1	2	-
Utah	-	0	2	4	13	-	0	1	-	2	-	0	0	-	3
Wyoming ${ }^{\dagger}$	-	0	2	1	2	-	0	0	-	-	-	0	0	-	-
Pacific	6	5	21	126	114	1	3	11	55	68	3	4	10	63	48
Alaska	-	0	2	-	-	-	0	1	-	2	-	0	2	3	2
California	6	4	15	113	103	1	2	9	37	45	2	2	10	46	31
Hawaii	-	0	1	1	1	N	0	0	N	N	-	0	1	2	2
Oregon	-	0	3	4	3	-	0	3	18	20	-	0	3	5	5
Washington	-	0	6	8	7	-	0	4		1	1	0	5	7	8
Territories															
American Samoa	N	0	0	N	N	N	0	0	N	N	-	0	0	-	-
C.N.M.I.	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Guam	-	0	1	-	-	-	0	0	-	-	-	0	0	-	-
Puerto Rico	-	0	1	-	1	N	0	0	N	N	-	0	1	-	4
U.S. Virgin Islands	-	0	0	-	-	-	0	0	-	-	-	0	0	-	-

C.N.M.I.: Commonwealth of Northern Mariana Islands.

U: Unavailable. -: No reported cases. N: Not reportable. NN: Not Nationally Notifiable. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum.

* Case counts for reporting year 2010 and 2011 are provisional and subject to change. For further information on interpretation of these data, see http://www.cdc.gov/osels/ph_surveillance/
nndss/phs/files/ProvisionalNationa\%20NotifiableDiseasesSurveillanceData20100927.pdf. Data for TB are displayed in Table IV, which appears quarterly.
+ Contains data reported through the National Electronic Disease Surveillance System (NEDSS).

TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending June 11, 2011, and June 12, 2010 (23rd week)*

Reporting area	Meningococcal disease, invasive ${ }^{\dagger}$ All serogroups					Mumps					Pertussis				
	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2011 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2010 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2011 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2010 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2011 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2010 \end{aligned}$
		Med	Max				Med	Max				Med	Max		
United States	12	15	53	365	412	1	11	217	140	1,867	76	547	2,925	5,412	6,218
New England	-	0	4	19	8	-	0	2	1	18	-	10	24	136	137
Connecticut	-	0	1	3	-	-	0	0	-	11	-	1	8	18	21
Maine ${ }^{\S}$	-	0	1	3	2	-	0	1	-	1	-	1	8	50	9
Massachusetts	-	0	2	9	2	-	0	2	1	5	-	5	13	48	92
New Hampshire	-	0	1	1	-	-	0	2	-	1	-	0	3	16	5
Rhode Island ${ }^{\text {§ }}$	-	0	1	-	-	-	0	0	-	-	-	0	7	3	7
Vermont ${ }^{\S}$	-	0	3	3	4	-	0	0	-	-	-	0	4	1	3
Mid. Atlantic	2	1	5	38	41	-	4	209	18	1,628	22	39	125	539	332
New Jersey	-	0	1	-	12	-	1	11	8	289	-	3	10	42	60
New York (Upstate)	-	0	4	10	8	-	0	5	3	636	9	12	81	160	106
New York City	2	0	3	16	11	-	0	201	7	689	1	1	19	22	16
Pennsylvania	-	0	2	12	10	-	0	16	-	14	12	18	70	315	150
E.N. Central	2	2	7	48	73	-	1	7	37	34	6	113	198	1,259	1,507
Illinois	-	0	2	12	15	-	1	3	23	10	-	22	50	249	262
Indiana	-	0	2	6	15	-	0	1	-	2	-	11	26	79	230
Michigan	-	0	4	5	11	-	0	1	5	14	2	30	57	390	423
Ohio	2	1	2	17	17	-	0	5	9	7	3	33	80	401	505
Wisconsin	-	0	2	8	15	-	0	1	-	1	1	13	26	140	87
W.N.Central	-	1	4	25	30	-	0	4	18	69	2	36	501	390	476
lowa	-	0	1	6	7	-	0	2	3	31	-	9	36	65	192
Kansas	-	0	2	2	4	-	0	1	3	3	1	2	9	33	72
Minnesota	-	0	2	-	2	-	0	4	1	3	-	0	469	109	5
Missouri	-	0	2	8	13	-	0	3	6	8	1	7	43	126	155
Nebraska ${ }^{\text {§ }}$	-	0	2	6	4	-	0	1	1	23	-	4	13	35	34
North Dakota	-	0	1	1	-	-	0	3	4	-	-	0	30	20	-
South Dakota	-	0	1	2	-	-	0	1	-	1	-	0	2	2	18
S. Atlantic	1	2	8	66	78	-	0	4	10	33	5	36	106	560	593
Delaware	-	0	1	1	-	-	0	0	-	-	-	0	4	10	5
District of Columbia	-	0	1	-	-	-	0	1	-	2	-	0	2	2	3
Florida	1	1	5	27	38	-	0	2	2	6	2	5	15	120	125
Georgia	-	0	2	4	6	-	0	2	1	2	-	4	13	73	83
Maryland ${ }^{\text {§ }}$	-	0	1	6	3	-	0	1	1	7	1	2	6	39	53
North Carolina	-	0	3	11	9	-	0	2	4	5	-	3	35	95	131
South Carolina ${ }^{\text {§ }}$	-	0	1	6	7	-	0	1	-	3	-	6	25	60	118
Virginia§	-	0	2	9	13	-	0	2	2	6	2	7	41	116	67
West Virginia	-	0	1	2	2	-	0	0	-	2	-	1	41	45	8
E.S. Central	1	1	3	16	21	-	0	2	3	9	-	12	35	161	344
Alabama ${ }^{\text {¢ }}$	-	0	2	8	4	-	0	2	1	6	-	3	9	60	101
Kentucky	-	0	1	-	8	-	0	0	-	1	-	3	16	41	121
Mississippi	-	0	1	2	3	-	0	1	2	-	-	1	10	8	30
Tennessee ${ }^{\text {§ }}$	1	0	2	6	6	-	0	1	-	2	-	3	11	52	92
W.S.Central	1	1	12	29	48	1	1	15	43	38	9	46	297	425	1,265
Arkansas ${ }^{\text {® }}$	-	0	1	6	5	-	0	1	1	2	-	3	18	26	64
Louisiana	-	0	2	5	11	-	0	2	-	3	-	1	3	10	19
Oklahoma	-	0	2	5	12	-	0	1	1	-	-	0	92	17	11
Texas ${ }^{5}$	1	1	10	13	20	1	1	14	41	33	9	38	187	372	1,171
Mountain	1	1	6	28	27	-	0	4	2	10	13	43	100	855	507
Arizona	-	0	2	8	7	-	0	1	-	4	2	14	29	336	190
Colorado	1	0	4	4	8	-	0	1	1	5	9	13	63	304	57
Idaho ${ }^{\text {§ }}$	-	0	1	3	4	-	0	1	-	-	1	2	15	40	67
Montana§	-	0	2	3	1	-	0	0	-	-	1	2	16	55	18
Nevada§	-	0	1	3	4	-	0	1	-	-	-	0	7	15	7
New Mexico ${ }^{\text {§ }}$	-	0	1	1	2	-	0	2	1	-	-	3	11	54	36
Utah	-	0	1	6	1	-	0	1	-	1	-	6	16	49	127
Wyoming ${ }^{\S}$	-	0	1	-	-	-	0	1	-	-	-	0	2	2	5
Pacific	4	4	26	96	86	-	0	5	8	28	19	146	1,710	1,087	1,057
Alaska	-	0	1	1	1	-	0	1	1	1	-	0	6	15	12
California	2	2	17	65	54	-	0	4	2	18	1	128	1,569	828	829
Hawaii		0	1	3	1	-	0	1	2	2	2	1	6	17	25
Oregon	-	1	3	16	16	-	0	1	3	1	-	5	10	93	126
Washington	2	0	8	11	14	-	0	1	-	6	16	11	131	134	65
Territories															
American Samoa	-	0	0	-	-	-	0	0	-	-	-	0	0	-	-
C.N.M.I.	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Guam	-	0	0	-	-	-	3	18	12	345	-	0	14	31	-
Puerto Rico	-	0	1	-	-	-	0	1	-	-	-	0	1	1	1
U.S. Virgin Islands	-	0	0	-	-	-	0	0	-	-	-	0	0	-	-

C.N.M.I.: Commonwealth of Northern Mariana Islands.

U: Unavailable. -: No reported cases. N: Not reportable. NN: Not Nationally Notifiable. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum.

* Case counts for reporting year 2010 and 2011 are provisional and subject to change. For further information on interpretation of these data, see http://www.cdc.gov/osels/ph_surveillance/ nndss/phs/files/ProvisionalNationa\%20NotifiableDiseasesSurveillanceData20100927.pdf. Data for TB are displayed in Table IV, which appears quarterly.
Data for meningococcal disease, invasive caused by serogroups A, C, Y, and W-135; serogroup B; other serogroup; and unknown serogroup are available in Table I.
${ }^{\S}$ Contains data reported through the National Electronic Disease Surveillance System (NEDSS).

TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending June 11, 2011, and June 12, 2010 (23rd week)*

Reporting area	Rabies, animal					Salmonellosis					Shiga toxin-producing E. coli (STEC) ${ }^{\dagger}$				
	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2011 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2010 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2011 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2010 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2011 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2010 \end{aligned}$
		Med	Max				Med	Max				Med	Max		
United States	62	63	172	1,038	1,838	559	960	1,812	12,427	14,947	77	97	264	1,406	1,414
New England	2	4	18	46	112	2	26	185	491	1,165	2	2	24	50	106
Connecticut	-	1	8	-	54	-	0	163	163	491	-	0	24	24	60
Maine ${ }^{\S}$	2	1	3	23	26	-	2	8	46	41	1	0	3	9	3
Massachusetts	-	0	0	-	-	-	17	52	204	455	-	0	9	5	29
New Hampshire	-	0	6	6	4	-	3	12	50	69	-	0	3	9	10
Rhode Island ${ }^{\text {§ }}$	-	0	4	2	9	-	1	17	10	88	-	0	1	-	-
Vermont ${ }^{\text {§ }}$	-	1	3	15	19	2	1	5	18	21	1	0	2	3	4
Mid. Atlantic	9	16	33	291	482	72	88	217	1,382	1,847	13	9	30	151	145
New Jersey	-	0	0	-	-	-	16	57	100	356	-	2	9	30	37
New York (Upstate)	9	7	19	122	208	38	25	63	388	418	11	3	12	51	50
New York City	-	0	4	-	123	4	19	53	337	432	-	1	6	21	12
Pennsylvania	-	8	17	169	151	30	32	80	557	641	2	3	13	49	46
E.N. Central	1	2	27	36	57	29	82	265	1,316	2,032	4	11	48	165	239
Illinois	-	1	11	9	24	-	27	123	410	698	-	2	9	16	51
Indiana	-	0	1	1		-	11	61	143	226	-	2	10	36	32
Michigan	1	1	5	10	21	8	13	49	224	319	2	2	7	40	60
Ohio	-	0	12	16	12	21	22	46	377	513	2	2	11	50	43
Wisconsin	N	0	0	N	N	-	11	57	162	276	-	2	16	23	53
W.N. Central	5	2	40	34	103	38	48	121	714	905	9	13	49	155	243
lowa	-	0	3	-	7	2	9	34	155	140	-	2	16	31	40
Kansas	2	1	4	15	27	7	7	18	108	134	1	1	5	24	21
Minnesota	-	0	34	-	14	-	6	30	-	261	-	2	20	-	61
Missouri	-	0	6	-	27	20	15	43	298	240	4	4	12	59	87
Nebraska§	-	0	3	12	24	9	4	13	74	69	4	1	6	28	22
North Dakota	3	0	6	7	4	-	0	15	15	7	-	0	10	4	3
South Dakota	-	0	0	-	-	-	3	17	64	54	-	0	4	9	9
S. Atlantic	42	19	52	511	540	191	276	624	3,639	3,492	18	17	31	359	205
Delaware	-	0	0	-	-	2	3	11	42	46	-	0	2	4	1
District of Columbia	-	0	0	-	-	-	1	7	13	41	-	0	1	1	6
Florida	-	0	29	47	121	108	109	226	1,507	1,569	15	6	15	173	65
Georgia	-	0	0	-	-	23	44	142	610	550	-	2	7	35	26
Maryland ${ }^{\text {® }}$	-	6	14	127	161	14	19	54	283	306	1	2	8	35	26
North Carolina	-	0	0	-	-	8	30	241	524	369	-	2	10	39	17
South Carolina ${ }^{\text {§ }}$	N	0	0	N	N	22	28	99	313	261	-	0	4	11	8
Virginia ${ }^{\text {® }}$	12	12	27	286	225	14	21	68	314	273	2	3	9	59	51
West Virginia	30	0	15	51	33	-	0	14	33	77	-	0	4	2	5
E.S. Central	1	3	7	55	88	26	57	175	817	822	12	5	22	93	70
Alabama ${ }^{\text {® }}$	1	1	7	39	38	7	20	52	224	227	2	1	4	16	19
Kentucky	-	0	4	3	4	-	10	32	120	171	-	1	6	11	10
Mississippi	-	0	0	-	-	13	18	65	231	199	-	0	12	5	8
Tennessee ${ }^{\text {® }}$	-	1	4	13	46	6	19	53	242	225	10	3	8	61	33
W.S. Central	1	9	54	47	371	83	145	515	1,485	1,578	1	8	151	108	74
Arkansas ${ }^{\text {8 }}$	1	0	10	35	11	10	13	43	188	124	1	0	4	9	17
Louisiana	-	0	0	-	-	-	19	52	141	371	-	0	2	3	7
Oklahoma	-	0	30	12	6	12	11	95	154	159	-	1	55	12	3
Texas ${ }^{\text {® }}$	-	8	30	-	354	61	95	381	1,002	924	-	6	95	84	47
Mountain	1	0	5	5	21	22	50	113	828	987	5	10	33	138	166
Arizona	N	0	0	N	N	-	16	43	269	307	1	1	14	35	25
Colorado	-	0	0	-	-	10	10	24	184	223	1	3	21	16	58
Idahos ${ }^{\text {s }}$	-	0	2	-	1	4	3	9	63	58	3	2	7	29	15
Montana ${ }^{\text {§ }}$	N	0	0	N	N	3	2	6	37	42	-	1	3	10	19
Nevada ${ }^{\text {§ }}$	-	0	2	-	1	2	4	21	69	90	-	0	6	14	10
New Mexico ${ }^{\text {§ }}$	-	0	2	3	5	1	5	19	72	99	-	1	6	15	14
Utah	1	0	3	2	-	1	6	17	110	150	-	1	8	17	19
Wyoming ${ }^{\S}$,	0	4	-	14	1	1	8	24	18	-	0	3	2	6
Pacific	-	3	15	13	64	96	107	288	1,755	2,119	13	13	46	187	166
Alaska	-	0	2	9	11	-	1	4	28	36	-	0	1	-	1
California	-	2	10	-	46	56	76	232	1,310	1,440	5	8	36	132	74
Hawaii	-	0	0	-	-	8	6	13	120	127		0	3	2	15
Oregon	-	0	2	4	7	-	8	20	115	264	-	2	11	24	23
Washington	-	0	14	-	-	32	15	42	182	252	8	2	20	29	53
Territories															
American Samoa	N	0	0	N	N	-	0	1	-	1	-	0	0	-	-
C.N.M.I.	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Guam	-	0	0	-	-	-	0	3	6	1	-	0	0	-	-
Puerto Rico	2	0	6	18	22	-	8	25	31	228	-	0	0	-	-
U.S. Virgin Islands	-	0	0	-	-	-	0	0	-	-	-	0	0	-	-

C.N.M.I.: Commonwealth of Northern Mariana Islands.

U: Unavailable. -: No reported cases. N: Not reportable. NN: Not Nationally Notifiable. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum.

* Case counts for reporting year 2010 and 2011 are provisional and subject to change. For further information on interpretation of these data, see http://www.cdc.gov/osels/ph_surveillance/ nndss/phs/files/ProvisionalNationa\%20NotifiableDiseasesSurveillanceData20100927.pdf. Data for TB are displayed in Table IV, which appears quarterly.
${ }^{\dagger}$ Includes E. coli O157:H7; Shiga toxin-positive, serogroup non-O157; and Shiga toxin-positive, not serogrouped.
${ }^{\S}$ Contains data reported through the National Electronic Disease Surveillance System (NEDSS).

TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending June 11, 2011, and June 12, 2010 (23rd week)*

Reporting area	Streptococcus pneumoniae, ${ }^{\dagger}$ invasive disease										Syphilis, primary and secondary				
	All ages					Age < 5									
	Current week	$\underline{\text { Previous } 52 \text { weeks }}$		$\begin{aligned} & \text { Cum } \\ & 2011 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2010 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2011 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2010 \end{aligned}$	Current week	$\underline{\text { Previous } 52 \text { weeks }}$		Cum	Cum
		Med	Max				Med	Max				Med	Max	2011	2010
United States	153	284	937	7,148	8,812	13	24	101	546	1,056	69	257	354	4,913	5,656
New England	2	11	79	206	468	-	1	5	23	65	3	9	19	163	201
Connecticut	-	0	49	7	216	-	0	3	6	20	-	1	8	24	40
Maine ${ }^{\text {§ }}$	-	2	13	72	71	-	0	1	3	5	-	0	3	8	14
Massachusetts	-	0	3	14	49	-	0	3	6	34	1	5	14	96	123
New Hampshire	-	2	8	62	69	-	0	1	3	3	-	0	3	12	9
Rhode Island ${ }^{\S}$	-	0	36	8	16	-	0	3	-	1	2	0	7	19	13
Vermont ${ }^{\S}$	2	1	6	43	47	-	0	2	5	2	-	0	2	4	2
Mid. Atlantic	5	21	81	482	919	-	3	27	67	124	14	32	46	618	737
New Jersey	-	6	29	79	413	-	1	4	22	36	-	4	10	94	111
New York (Upstate)	1	2	10	47	96	-	1	9	26	72	6	2	20	76	41
New York City	4	14	42	356	410	-	0	14	19	16	3	16	31	297	408
Pennsylvania	N	0	0	N	N	N	0	0	N	N	5	7	16	151	177
E.N. Central	37	65	109	1,715	1,817	4	4	9	102	159	2	30	56	516	833
Illinois	N	0	0	N	N	N	0	0	N	N	-	14	23	199	411
Indiana	-	14	32	337	406	-	1	4	16	32	2	3	14	60	63
Michigan	9	14	29	386	414	2	1	4	24	50	-	4	10	83	122
Ohio	27	25	45	739	706	2	2	7	51	54	-	9	21	157	215
Wisconsin	1	9	24	253	291	-	0	3	11	23	-	1	3	17	22
W.N. Central	1	6	35	86	479	-	1	5	4	67	-	7	18	127	116
lowa	N	0	0	N	N	N	0	0	N	N	-	0	3	9	7
Kansas	N	0	0	N	N	N	0	0	N	N	-	0	3	7	7
Minnesota	-	4	24	-	370	-	0	5	-	55	-	3	10	56	29
Missouri	N	0	0	N	N	N	0	0	N	N	-	2	9	53	68
Nebraska ${ }^{\S}$	1	2	9	68	75	-	0	1	4	11	-	0	2	2	5
North Dakota	-	0	18	18	34	-	0	1	-	1	-	0	1	-	-
South Dakota	N	0	0	N	N	N	0	0	N	N	-	0	1	-	-
S. Atlantic	33	67	170	1,997	2,421	1	7	22	148	294	20	63	166	1,264	1,282
Delaware	-	1	6	30	21	-	0	1	-	-	-	0	4	6	3
District of Columbia	-	1	3	27	50	1	0	1	4	7	-	3	8	71	58
Florida	17	22	68	817	919	1	3	13	74	116	4	23	44	468	452
Georgia	6	18	54	415	794	-	2	7	34	92	1	10	118	197	275
Maryland ${ }^{\S}$	3	9	32	297	280	-	0	4	14	33	2	7	17	168	105
North Carolina	N	0	0	N	N	N	0	0	N	N	8	7	19	166	212
South Carolina§	7	8	25	286	299	-	1	3	17	34	1	3	10	88	56
Virginia§	N	0	0	N	N	N	0	0	N	N	4	5	16	100	118
West Virginia	-	1	48	125	58	-	0	6	5	12	-	0	2	-	3
E.S. Central	17	20	44	540	607	1	1	6	30	60	12	15	34	283	391
Alabama§	N	0	0	N	N	N	0	0	N	N	-	3	11	67	117
Kentucky	N	0	11	N	N	N	0	3	N	N	5	2	16	48	52
Mississippi	N	0	0	N	N	N	0	0	N	N	6	3	16	59	93
Tennessee ${ }^{\text {§ }}$	17	18	36	540	607	1	1	4	30	60	1	5	11	109	129
W.S. Central	40	32	368	1,064	984	5	4	30	96	123	5	37	71	697	866
Arkansas§	9	3	26	137	98	-	0	3	11	11	-	3	10	73	114
Louisiana	-	3	11	97	58	-	0	2	8	16	5	8	36	140	181
Oklahoma	N	0	0	N	N	N	0	0	N	N	-	1	6	22	45
Texas®	31	26	333	830	828	5	3	27	77	96	-	23	33	462	526
Mountain	18	31	72	974	1,057	2	3	8	70	151	2	12	24	222	230
Arizona	5	11	43	485	520	1	1	5	35	69	2	4	9	72	93
Colorado	11	9	23	267	307	1	0	3	16	44	-	2	8	48	52
Idahos ${ }^{\text {® }}$	N	0	0	N	N	N	0	0	N	N	-	0	2	3	2
Montana§	N	0	0	N	N	N	0	0	N	N	-	0	2	1	-
Nevada§	N	0	0	N	N	N	0	0	N	N	2	3	9	63	38
New Mexico ${ }^{\text {§ }}$	2	3	13	142	97	-	0	2	9	13	-	1	4	29	14
Utah	-	3	8	63	123	-	0	3	10	23	-	0	5	6	31
Wyoming ${ }^{\S}$	-	0	15	17	10	-	0	1	-	2	-	0	0	-	-
Pacific	-	2	11	84	60	-	0	2	6	13	11	51	66	1,023	1,000
Alaska	-	2	11	83	60	-	0	2	6	13	-	0	0	-	3
California	N	0	0	N	N	N	0	0	N	N	8	41	57	842	854
Hawaii	-	0	3	1	-	-	0	0	-	-	-	0	5	6	19
Oregon	N	0	0	N	N	N	0	0	N	N	-	1	7	39	27
Washington	N	0	0	N	N	N	0	0	N	N	3	6	13	136	97
Territories															
American Samoa	N	0	0	N	N	N	0	0	N	N	-	0	0	-	-
C.N.M.I.	-	-	-	-	-	-	-	-	-	-	-	0	0	-	-
Guam	-	0	0	-	-	-	0	0	-	-	-	0	0	-	-
Puerto Rico	-	0	0	-	-	-	0	0	-	-	8	4	15	99	104
U.S. Virgin Islands	-	0	0	-	-	-	0	0	-	-	-	0	0	-	-

C.N.M.I.: Commonwealth of Northern Mariana Islands.

U: Unavailable. -: No reported cases. N: Not reportable. NN: Not Nationally Notifiable. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum.
 nndss/phs/files/ProvisionalNationa\%20NotifiableDiseasesSurveillanceData20100927.pdf. Data for TB are displayed in Table IV, which appears quarterly.
 a normally sterile body site (e.g., blood or cerebrospinal fluid).
${ }^{\S}$ Contains data reported through the National Electronic Disease Surveillance System (NEDSS)

TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending June 11, 2011, and June 12, 2010 (23rd week)*

Reporting area	Varicella (chickenpox)					West Nile virus disease ${ }^{\dagger}$									
								roinvasiv				Nonn	oinvasi		
	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2011 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2010 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2011 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2010 \\ & \hline \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2011 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2010 \end{aligned}$
		Med	Max				Med	Max				Med	Max		
United States	148	240	358	5,323	8,483	-	1	71	-	2	-	0	53	1	11
New England	7	18	46	379	552	-	0	3	-	-	-	0	2	-	1
Connecticut	-	5	15	117	158	-	0	2	-	-	-	0	2	-	1
Maine ${ }^{\text {f }}$	-	4	16	88	104	-	0	0	-	-	-	0	0	-	-
Massachusetts	-	4	17	103	150	-	0	2	-	-	-	0	1	-	-
New Hampshire	-	1	9	9	66	-	0	1	-	-	-	0	0	-	-
Rhode Island ${ }^{\text {n }}$	-	0	4	6	16	-	0	0	-	-	-	0	0	-	-
Vermont ${ }^{\text {a }}$	7	2	10	56	58	-	0	0	-	-	-	0	0	-	-
Mid. Atlantic	26	29	50	662	915	-	0	19	-	-	-	0	13	-	-
New Jersey	5	8	19	188	345	-	0	3	-	-	-	0	6	-	-
New York (Upstate)	N	0	0	N	N	-	0	9	-	-	-	0	7	-	-
New York City	-	0	0	-	1	-	0	7	-	-	-	0	4	-	-
Pennsylvania	21	18	41	474	569	-	0	3	-	-	-	0	3	-	-
E.N. Central	26	68	118	1,577	2,923	-	0	15	-	-	-	0	7	-	-
Illinois		17	31	401	227	-	0	10	-	-	-	0	4	-	-
Indiana ${ }^{\text {a }}$	2	5	18	120	202	-	0	2	-	-	-	0	2	-	-
Michigan	11	20	38	502	914	-	0	6	-	-	-	0	1	-	-
Ohio	13	21	58	553	782	-	0	1	-	-	-	0	1	-	-
Wisconsin	-	4	22	1	298	-	0	0	-	-	-	0	1	-	-
W.N. Central	-	9	35	176	441	-	0	7	-	-	-	0	11	-	4
lowa	N	0	0	N	N	-	0	1	-	-	-	0	2	-	-
Kansas ${ }^{\text {a }}$	-	2	8	53	191	-	0	1	-	-	-	0	3	-	2
Minnesota	-	0	0	-	-	-	0	1	-	-	-	0	3	-	-
Missouri	-	6	24	90	204	-	0	1	-	-	-	0	0	-	-
Nebraska ${ }^{\text {a }}$	-	0	5	3	2	-	0	3	-	-	-	0	7	-	2
North Dakota	-	0	10	16	29	-	0	2	-	-	-	0	2	-	-
South Dakota	-	1	7	14	15	-	0	2	-	-	-	0	3	-	-
S. Atlantic	26	33	63	814	1,203	-	0	6	-	-	-	0	4	-	3
Delawaref	-	0	3	5	19	-	0	0	-	-	-	0	0	-	-
District of Columbia	-	0	1	8	12	-	0	1	-	-	-	0	1	-	-
Florida ${ }^{\text {a }}$	17	15	38	493	614	-	0	3	-	-	-	0	1	-	-
Georgia	N	0	0	N	N	-	0	1	-	-	-	0	3	-	3
Maryland ${ }^{\text {f }}$	N	0	0	N	N	-	0	3	-	-	-	0	2	-	-
North Carolina	N	0	0	N	N	-	0	0	-	-	-	0	0	-	-
South Carolina ${ }^{\text {a }}$	-	0	8	11	74	-	0	1	-	-	-	0	0	-	-
Virginial	9	9	29	216	240	-	0	1	-	-	-	0	1	-	-
West Virginia	-	5	18	81	244	-	0	0	-	-	-	0	0	-	-
E.S. Central	2	5	15	154	169	-	0	1	-	1	-	0	3	1	1
Alabamal	2	5	14	146	163	-	0	1	-	-	-	0	1	-	1
Kentucky	N	0	0	N	N	-	0	1	-	-	-	0	1	-	-
Mississippi	-	0	3	8	6	-	0	1	-	1	-	0	2	1	-
Tennesseef	N	0	0	N	N	-	0	1	-	-	-	0	2	-	-
W.S. Central	57	42	258	1,147	1,602	-	0	16	-	-	-	0	3	-	-
Arkansas"	5	3	17	107	113	-	0	3	-	-	-	0	1	-	-
Louisiana	-	1	5	18	38	-	0	3	-	-	-	0	1	-	-
Oklahoma	N	0	0	N	N	-	0	1	-	-	-	0	0	-	-
Texas"	52	37	247	1,022	1,451	-	0	15	-	-	-	0	2	-	-
Mountain	3	14	50	358	626	-	0	18	-	1	-	0	15	-	2
Arizona	-	0	0	-	-	-	0	13	-	1	-	0	9	-	1
Colorado ${ }^{\text {a }}$	3	6	31	135	219	-	0	5	-		-	0	11	-	1
Idahof	N	0	0	N	N	-	0	0	-	-	-	0	1	-	-
Montanal	-	2	28	90	121	-	0	0	-	-	-	0	0	-	-
Nevada ${ }^{\text {a }}$	N	0	0	N	N	-	0	0	-	-	-	0	1	-	-
New Mexicof	-	1	8	19	60	-	0	6	-	-	-	0	2	-	-
Utah	-	4	26	107	213	-	0	1	-	-	-	0	1	-	-
Wyoming ${ }^{\text {f }}$	-	0	3	7	13	-	0	1	-	-	-	0	1	-	-
Pacific	1	3	6	56	52	-	0	8	-	-	-	0	6	-	-
Alaska	-	1	5	28	19	-	0	0	-	-	-	0	0	-	-
California	-	0	3	6	16	-	0	8	-	-	-	0	6	-	-
Hawaii	1	1	4	22	17	-	0	0	-	-	-	0	0	-	-
Oregon	N	0	0	N	N	-	0	0	-	-	-	0	0	-	-
Washington	N	0	0	N	N	-	0	1	-	-	-	0	1	-	-
Territories															
American Samoa	N	0	0	N	N	-	0	0	-	-	-	0	0	-	-
C.N.M.I.	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Guam	-	0	4	16	8	-	0	0	-	-	-	0	0	-	-
Puerto Rico	1	8	31	53	236	-	0	0	-	-	-	0	0	-	-
U.S. Virgin Islands	-	0	0	-	-	-	0	0	-	-	-	0	0	-	-

C.N.M.I.: Commonwealth of Northern Mariana Islands.

U: Unavailable. -: No reported cases. N: Not reportable. NN: Not Nationally Notifiable. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum.

* Case counts for reporting year 2010 and 2011 are provisional and subject to change. For further information on interpretation of these data, see http://www.cdc.gov/osels/ph_surveillance/ nndss/phs/files/ProvisionalNationa\%20NotifiableDiseasesSurveillanceData20100927.pdf. Data for TB are displayed in Table IV, which appears quarterly.
Updated weekly from reports to the Division of Vector-Borne Infectious Diseases, National Center for Zoonotic, Vector-Borne, and Enteric Diseases (ArboNET Surveillance). Data for California serogroup, eastern equine, Powassan, St. Louis, and western equine diseases are available in Table I.
${ }^{\S}$ Not reportable in all states. Data from states where the condition is not reportable are excluded from this table, except starting in 2007 for the domestic arboviral diseases and influenzaassociated pediatric mortality, and in 2003 for SARS-CoV. Reporting exceptions are available at http://www.cdc.gov/osels/ph_surveillance/nndss/phs/infdis.htm.
${ }^{9}$ Contains data reported through the National Electronic Disease Surveillance System (NEDSS).

Reporting area	All causes, by age (years)						P\& ${ }^{\dagger}$ Total	Reporting area (Continued)	All causes, by age (years)						P\& ${ }^{\dagger}$ Total
	All Ages	≥ 65	45-64	25-44	1-24	<1			All Ages	≥ 65	45-64	25-44	1-24	<1	
New England	580	379	141	31	14	15	52	S. Atlantic	1,170	734	305	78	34	19	73
Boston, MA	151	82	39	14	8	8	9	Atlanta, GA	130	77	37	8	7	1	3
Bridgeport, CT	34	24	7	3	-	-	3	Baltimore, MD	113	68	28	10	4	3	12
Cambridge, MA	18	16	1	1	-	-	2	Charlotte, NC	121	81	25	6	6	3	9
Fall River, MA	29	22	7	-	-	-	8	Jacksonville, FL	182	116	47	12	5	2	8
Hartford, CT	65	43	12	6	3	1	5	Miami, FL	121	81	27	6	3	4	5
Lowell, MA	14	11	3	-	-	-	1	Norfolk, VA	41	22	14	3	1	1	3
Lynn, MA	9	7	2	-	-	-	-	Richmond, VA	47	21	21	5	-	-	4
New Bedford, MA	24	17	6	1	-	-	1	Savannah, GA	41	30	10	1	-	-	6
New Haven, CT	43	26	16	-	-	1	4	St. Petersburg, FL	52	33	10	7	-	2	1
Providence, RI	62	46	11	3	2	-	3	Tampa, FL	191	132	44	10	3	2	9
Somerville, MA	4	3	1	-	-	-	-	Washington, D.C.	123	68	39	10	5	1	13
Springfield, MA	30	18	7	2	1	2	-	Wilmington, DE	8	5	3	-	-	-	-
Waterbury, CT	32	23	8	1	-	-	3	E.S. Central	883	568	237	46	20	12	70
Worcester, MA	65	41	21	-	-	3	13	Birmingham, AL	170	109	45	6	6	4	18
Mid. Atlantic	1,649	1,129	376	82	37	24	91	Chattanooga, TN	108	66	31	9	2	-	1
Albany, NY	53	38	9	4	2	-	3	Knoxville, TN	111	73	30	5	2	1	6
Allentown, PA	24	15	8	1	-	-	1	Lexington, KY	50	31	17	1	1	-	2
Buffalo, NY	64	44	13	2	1	4	7	Memphis, TN	152	94	41	12	4	1	19
Camden, NJ	33	16	5	5	2	5	4	Mobile, AL	90	58	25	5	2	-	6
Elizabeth, NJ	22	17	4	1	-	-	3	Montgomery, AL	31	22	9	-	-	-	4
Erie, PA	75	59	13	2	1	-	4	Nashville, TN	171	115	39	8	3	6	14
Jersey City, NJ	16	13	2	-	1	-	2	W.S. Central	1,238	800	300	81	32	24	75
New York City, NY	884	604	212	40	20	7	43	Austin, TX	98	73	18	2	2	3	3
Newark, NJ	20	14	6	-	-	-	-	Baton Rouge, LA	66	51	8	5	2	-	-
Paterson, NJ	U	U	U	U	U	U	U	Corpus Christi, TX	64	40	18	2	4	-	6
Philadelphia, PA	194	119	48	18	5	4	7	Dallas, TX	196	107	53	20	6	10	9
Pittsburgh, PA§	21	20	1	-	-	-	-	El Paso, TX	113	79	21	10	2	1	11
Reading, PA	31	23	4	2	-	2	1	Fort Worth, TX	U	U	U	U	U	U	U
Rochester, NY	68	42	18	3	3	2	3	Houston, TX	167	108	33	13	7	5	16
Schenectady, NY	28	24	3	1	-	-	4	Little Rock, AR	88	60	23	4	1	-	-
Scranton, PA	30	22	7	-	1	-	1	New Orleans, LA	U	U	U	U	U	U	U
Syracuse, NY	37	27	9	1	-	-	5	San Antonio, TX	241	149	67	15	6	4	13
Trenton, NJ	21	13	6	2	-	-	1	Shreveport, LA	73	43	27	2	-	1	4
Utica, NY	13	8	4	-	1	-	1	Tulsa, OK	132	90	32	8	2	-	13
Yonkers, NY	15	11	4	-	-	-	1	Mountain	993	683	215	60	25	10	61
E.N. Central	1,950	1,292	476	112	38	32	151	Albuquerque, NM	145	98	29	11	5	2	8
Akron, OH	46	33	8	1	2	2	4	Boise, ID	71	52	12	4	1	2	3
Canton, OH	38	31	5	1	-	1	5	Colorado Springs, CO	90	65	15	5	3	2	3
Chicago, IL	249	144	63	31	11	-	16	Denver, CO	99	62	28	5	2	2	6
Cincinnati, OH	89	63	22	2	-	2	11	Las Vegas, NV	268	178	60	24	5	1	20
Cleveland, OH	237	172	54	9	1	1	14	Ogden, UT	23	17	6	-	-	-	1
Columbus, OH	224	153	49	14	5	3	21	Phoenix, AZ	U	U	U	U	U	U	U
Dayton, OH	134	100	22	10	2	-	11	Pueblo, CO	29	24	4	-	1	-	1
Detroit, MI	114	42	49	8	9	6	3	Salt Lake City, UT	111	69	33	4	5	-	7
Evansville, IN	62	41	18	2	-	1	3	Tucson, AZ	157	118	28	7	3	1	12
Fort Wayne, IN	103	74	23	3	1	2	6	Pacific	1,753	1,211	382	96	40	24	169
Gary, IN	11	7	1	2	1	-	2	Berkeley, CA	12	8	1	3	-	-	-
Grand Rapids, MI	67	50	9	5	1	2	9	Fresno, CA	113	85	22	1	4	1	12
Indianapolis, IN	164	103	50	5	1	5	16	Glendale, CA	33	26	6	-	1	-	8
Lansing, MI	52	35	14	2	1	-	5	Honolulu, HI	72	53	13	4	2	-	5
Milwaukee, WI	81	53	24	3	1	-	5	Long Beach, CA	66	45	16	5	-	-	7
Peoria, IL	49	31	11	3	-	4	6	Los Angeles, CA	300	192	71	24	9	4	42
Rockford, IL	44	30	13	-	-	1	1	Pasadena, CA	21	14	6	-	1	-	3
South Bend, IN	58	41	13	2	-	2	3	Portland, OR	139	88	40	7	3	1	9
Toledo, OH	74	43	21	9	1	-	7	Sacramento, CA	224	155	48	11	6	4	20
Youngstown, OH	54	46	7	-	1	-	3	San Diego, CA	169	118	35	7	2	7	11
W.N. Central	554	360	137	31	11	14	34	San Francisco, CA	109	75	22	8	1	3	15
Des Moines, IA	55	36	14	3	2	-	2	San Jose, CA	185	128	44	7	5	1	18
Duluth, MN	32	23	7	2	-	-	3	Santa Cruz, CA	28	19	5	2	2	-	2
Kansas City, KS	30	15	12	3	-	-	-	Seattle, WA	109	80	21	5	2	1	6
Kansas City, MO	95	55	23	12	1	4	6	Spokane, WA	71	52	13	4	-	2	7
Lincoln, NE	45	33	7	3	1	1	2	Tacoma, WA	102	73	19	8	2	-	4
Minneapolis, MN	58	40	8	2	2	5	3	Total ${ }^{\text {® }}$	10,770	7,156	2,569	617	251	174	776
Omaha, NE	88	54	29	3	1	1	6		10,770	7,156	2,569			174	
St. Louis, MO	12	7	3	1	-	1	1								
St. Paul, MN	59	45	12	1	-	1	6								
Wichita, KS	80	52	22	1	4	1	5								

U: Unavailable. - No reported cases.

* Mortality data in this table are voluntarily reported from 122 cities in the United States, most of which have populations of >100,000. A death is reported by the place of its occurrence and
by the week that the death certificate was filed. Fetal deaths are not included.
† Pneumonia and influenza.
§ Because of changes in reporting methods in this Pennsylvania city, these numbers are partial counts for the current week. Complete counts will be available in 4 to 6 weeks.
${ }^{\circledR}$ Total includes unknown ages.

The Morbidity and Mortality Weekly Report (MMWR) Series is prepared by the Centers for Disease Control and Prevention (CDC) and is available free of charge in electronic format. To receive an electronic copy each week, visit MMWR's free subscription page at http://www.cdc.gov/mmwr/mmwrsubscribe. html. Paper copy subscriptions are available through the Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402; telephone 202-512-1800.

Data presented by the Notifiable Disease Data Team and 122 Cities Mortality Data Team in the weekly MMWR are provisional, based on weekly reports to CDC by state health departments. Address all inquiries about the $M M W R$ Series, including material to be considered for publication, to Editor, MMWR Series, Mailstop E-90, CDC, 1600 Clifton Rd., N.E., Atlanta, GA 30333 or to mmwrq@cdc.gov.

All material in the $M M W R$ Series is in the public domain and may be used and reprinted without permission; citation as to source, however, is appreciated.
Use of trade names and commercial sources is for identification only and does not imply endorsement by the U.S. Department of Health and Human Services.
References to non-CDC sites on the Internet are provided as a service to $M M W R$ readers and do not constitute or imply endorsement of these organizations or their programs by CDC or the U.S. Department of Health and Human Services. CDC is not responsible for the content of these sites. URL addresses listed in $M M W R$ were current as of the date of publication.
is U.S. Government Printing Office: 2011-723-011/21055 Region IV ISSN: 0149-2195

[^0]: * Overall response rate $=$ (number of participating schools/number of eligible sampled schools) \times ([number of usable questionnaires] / [number of eligible students sampled]).

[^1]: ${ }^{\dagger}$ BMI classifications: <85 percentile $=$ under/normal weight, ≥ 85 and <95 percentile $=$ overweight, and ≥ 95 percentile $=$ obese .

[^2]: ${ }^{\$}$ Available at http://www.thecommunityguide.org/pa.
 S Available at http://www.cdc.gov/healthyyouth/physicalactivity/guidelines. htm\#1.
 ** Additional information available at http://www.letsmove.gov.
 ${ }^{\dagger \dagger}$ Additional information available at http://www.cdc.gov/communitiesputting preventiontowork.
 §S Additional information available at http://www.saferoutesinfo.org.
 Is Available at http://www.physicalactivityplan.org.

[^3]: *Overall response rate $=$ (number of participating schools/number of eligible sampled schools) \times ([number of usable questionnaires] / [number of eligible students sampled]).
 ${ }^{\dagger}$ Such as lemonade, sweetened tea or coffee drinks, flavored milk, Snapple, or Sunny Delight, but not including soda or pop, sports drinks, energy drinks, or 100% fruit juice.

[^4]: \$The NYPANS questions included the following: "During the past 7 days, how many times did you drink 100% fruit juices such as orange juice, apple juice, or grape juice? (Do not count punch, Kool-Aid, sports drinks, or other fruitflavored drinks.)"; "During the past 7 days, how many times did you drink a can, bottle, or glass of soda or pop, such as Coke, Pepsi, or Sprite? (Do not count diet soda or diet pop.)"; "During the past 7 days, how many times did you drink a can, bottle, or glass of diet soda or pop, such as Diet Coke, Diet Pepsi, or Sprite Zero?"; "During the past 7 days, how many times did you drink a can, bottle, or glass of a sports drink such as Gatorade or PowerAde? (Do not count low-calorie sports drinks such as Propel or G2.)"; "During the past 7 days, how many times did you drink a can, bottle, or glass of an energy drink, such as Red Bull or Jolt? (Do not count diet energy drinks or sports drinks such as Gatorade or PowerAde.)"; "During the past 7 days, how many times did you drink a cup, can, or bottle of coffee, coffee drinks, or any kind of tea?"; "During the past 7 days, how many times did you drink a can, bottle, or glass of a sugarsweetened beverage such as lemonade, sweetened tea or coffee drinks, flavored milk, Snapple, or Sunny Delight? (Do not count soda or pop, sports drinks, energy drinks, or 100% fruit juice.)"; and "During the past 7 days, how many times did you drink a bottle or glass of plain water? Count tap, bottled, and unflavored sparkling water." For each question, the response options were as follows: "I did not drink (beverage) during the past 7 days," " 1 to 3 times during the past 7 days," " 4 to 6 times during the past 7 days," " 1 time per day," " 2 times per day," " 3 times per day," and " 4 or more times per day."
 ${ }^{5}$ Participants were asked the following question: "During the past 7 days, how many glasses of milk did you drink? (Count the milk you drank in a glass or cup, from a carton, or with cereal. Count the half pint of milk served at school as equal to one glass.)." The fat content of the milk consumed was not specified.

[^5]: ** Additional information is available at http://www.cnpp.usda.gov/dietaryguide lines.htm.

[^6]: *The question asking what kind of place was open-ended and coded by BRFSS interviewers, using one of the following options: a doctor's office or health maintenance organization; a health department; another type of clinic or health center (e.g., a community health center); a senior, recreation, or community center; a store (e.g., supermarket or drug store); a hospital (e.g., inpatient); an emergency department; workplace; some other kind of place; a school; don't know/not sure.
 \dagger January interview data were missing from DC, Illinois, Michigan, New Hampshire, North Carolina, and Utah. February interview data were missing from South Dakota. March interview data were missing from Louisiana, Michigan, and South Dakota. Interview data for all 3 months were missing from California, Nevada, Oklahoma, and Oregon.

[^7]: —: No reported cases. N: Not reportable. NN: Not Nationally Notifiable. Cum: Cumulative year-to-date counts.
 nndss/phs/files/ProvisionalNationa\%20NotifiableDiseasesSurveillanceData20100927.pdf
 Additional information is available at http://www.cdc.gov/osels/ph_surveillance/nndss/phs/files/5yearweeklyaverage.pdf.
 influenza-associated pediatric mortality, and in 2003 for SARS-CoV. Reporting exceptions are available at http://www.cdc.gov/osels/ph_surveillance/nndss/phs/infdis.htm.
 Enteric Diseases (ArboNET Surveillance). Data for West Nile virus are available in Table II.
 ** Data for H. influenzae (all ages, all serotypes) are available in Table II.
 occurring during the 2010-11 influenza season have been reported.
 $\S \S$ Of the two measles cases reported for the current week, one was imported and one was indigenous.
 II Data for meningococcal disease (all serogroups) are available in Table II.

 2009 were provided by the Influenza Division, National Center for Immunization and Respiratory Diseases (NCIRD).
 $t+\dagger$ No rubella cases were reported for the current week.
 $\S \S \S$ Updated weekly from reports to the Division of STD Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention.
 आ $\uparrow \uparrow$ There was one case of viral hemorrhagic fever reported during week 12 of 2010 . The one case report was confirmed as lassa fever. See Table II for dengue hemorrhagic fever.

